期刊文献+

离焦量和非单色光对二元相位光栅泰伯像的影响 被引量:3

The Influence of Defocus Length and Quasimonochromatic Line on Talbot Image with Binary Phase Gratings
下载PDF
导出
摘要 利用平面波衍射的角谱理论 ,分析计算了二元相位光栅衍射光场的空间分布 ,特别讨论了离焦量和非单色光对泰伯像的影响 .随离焦量和带宽的增加 ,泰伯像的对比度和衍射效率减小 ,而压缩比增加 .计算结果指出 ,在带宽 <10 0 0或离焦量 <0 .0 1时 ,其对比度和衍射效率减小不到10 % ,仍能成较高质量的泰伯像 ;当带宽 >5 0 0 0或离焦量 >0 .1时 ,成像质量显著下降 .用薄膜沉积法制作了二元相位光栅 ,实验验证了理论结果 .这些结果对泰伯成像和阵列照明器的设计有重要的参考价值 . The spatial distribution of Fresnel diffraction field of binary phase gratings is analyzed by using RSD theory. And the effects of defocus length and quasimonochromatic lines on Talbot image are especially studied. Both the contrast and the efficiency of diffraction decrease, and the ratio of compression rises as the increasing of defocus length δor band width bof quasimonochromatic line. The numerical results show that both of all reduce about less 10% when δ<0.01 or b<1000. Using the methods of film aggradation makes the binary phase grating. Experiment results are consistent with the theory results. These results are very useful for Talbot-imaging and the design of array illuminators.
作者 张耀举
出处 《光子学报》 EI CAS CSCD 北大核心 2003年第3期348-351,共4页 Acta Photonica Sinica
关键词 二元相位光栅 菲涅耳衍射 泰伯像 离焦量 非单色光 Binary phase grating Fresnel diffraction Talbot image Defocus length Quasimonochromatic line
  • 相关文献

参考文献10

  • 1[2]Guigay J P. On fresnel diffraction by one-dimension periodic objects, with application to structure determination of phase objects. Optica Acta, 1971,18(9): 677~682
  • 2[3]Lohmann A W. An array illuminator based on the Talbot-effect. Optik, 1987,79(1):41~45
  • 3[4]Patorski K, Wolf E. The self-imaging phenomenon and its applications,in Program in Optics, Amsterdam North-Holland,1989,28:3~110
  • 4[5]Lomann A W, Thomas J A. Making an array illuminator on the Talbot effect. Appl Opt, 1990,29(29):4337~4340
  • 5[6]Latimer P, Crouse R F. Talbot effect reinterpreted. Appl Opt, 1992,31(1):80~88
  • 6[7]Arrizon V, Ojeda-Castaneda J. Talbot array illuminators with binary phase gratings. Opt Lett, 1993,18(1):1~3
  • 7[8]Arrizon V, Lopez-Olazagasti E. Binary phase gratings for array generation at 1/16 of Talbot length. J Opt Soc Am (A), 1995,12(4):801~804
  • 8[9]Zhou C, Liu L. Simple equations for the calculation of a multilevel phase grating for Talbot array illumination. Opt Commun, 1995,115(1~2):40~44
  • 9[10]Zhou C, Wang H, Zhao S, et al. Number of phase levels of a Talbot array illuminator. Appl Opt, 2001,40(5):607~613
  • 10[11]Wang H, Zhou C,Li J, et al.Talbot effect of a grating under ultrashot pulsed-laser illumination. Microwave Opt Technol Lett, 2000,20:184~187

同被引文献24

  • 1孙琛,沈亦兵,白剑,侯西云,杨国光.Ronchi光栅Talbot效应长焦距测量的准确度极限研究[J].光子学报,2004,33(10):1214-1217. 被引量:10
  • 2范希智.利用杨氏双缝干涉讨论Talbot效应[J].光子学报,2005,34(4):621-623. 被引量:7
  • 3颜树华,彭金璋,徐琰,张军.高衍射效率亚波长结构Dammann光栅的设计[J].光子学报,2007,36(1):84-88. 被引量:5
  • 4Guerineau N, Harchaoui B, Primot J. Talbot experiment reexamined: demonstration of an achromatic and continuous self-imaging regime. Optics Communications, 2000,180 (4):199 ~ 203.
  • 5Patorski K. The self-imaging phenomenon and its applications, in: E. Wolf (Ed) Progress in Optics, vol.27, North-Holland, Amsterdam, 1989,1 ~ 10.
  • 6Wrage M, Glas P, Leitner M, et al. Phase-locked and selfimaging properties of a Talbot resonator applied to circular structures. Opt Commun,2001,191(3): 149 ~ 159.
  • 7Wang H,Zhou C,Liu L. Simple Fresnel diffraction equations of a grating for Talbot array illumination. Opt Commun,2000,173(1): 17~22.
  • 8M.Mansuripur.Classical Optics and Its Application[M].Cambridge Press,2002:251~262
  • 9Wang H,Zhou C,Liu L.Simple Fresnel diffraction equations of a grating for Talbot array illumination[J].Opt Commun.,2000,173(1):17~22
  • 10M.A.Grimm,A.W.Lohmann.Superresolution image for one-dimensional objects[J].J.Opt.Soc.Am.,1966,56(10):1151~1156

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部