摘要
利用数学理论得到结构动力学重特征值的灵敏度表达式 ,从而解决了奇异性问题· 然后 ,为降低计算工作量 ,基于Lanczos方法得到降阶的结构系统 ,从而得到降阶的灵敏度分析近似解· 用一个算例证明的方法正确性·
The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues is solved completely. To improve the computational efficient, the reduction system is obtained based on Lanczos vectors. After incorporating the mathematical theory with the Lanczos algorithm, the approximate sensitivity solution can be obtained. A numerical example is presented to illustrate the performance of the method.
出处
《应用数学和力学》
EI
CSCD
北大核心
2003年第1期83-88,共6页
Applied Mathematics and Mechanics