期刊文献+

实值随机变量的随机序与对偶随机序 被引量:2

The Stochastic Order and Dual Stochastic Order of Real-Valued Random Variables
下载PDF
导出
摘要 本文讨论随机变量的高阶序问题, §1简要地叙述了随机变量排序的经济学含义,主要是期望效用理论与其对偶理论, §2讨论了实值随机变量基于分布函数的高阶序问题,给出了其基于期望效用理论的刻画, §3讨论的是实值随机变量的基于对偶理论(对偶矩)的高阶序问题,并给出了其基于随机变量的Yarri等价性度量的刻画. This article discusses the high-ordered stochastic and dual stochastic orders of real-valued random variables. Section 1 describes in brief the economical meanings of ordering random variables in the framework of utility theory and its dual theory. Section 2 is on the high-ordered order of real-valued random variables based on the distributions. Some specifications of this order in expected utility theory are reached. Section 3 deals with the high-ordered order of real-valued random variables based on the dual theory, mainly the dual moments, and its specification in Yarri's equivalent measure of random variables are presented.
出处 《应用概率统计》 CSCD 北大核心 2003年第1期71-78,共8页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(编号:19831020) 贵州省自然科学基金资助.
  • 相关文献

参考文献9

  • 1[1]Andersom G., Nonparametric tests of stochastic dominance in income distributions, Econometrics, 64(1996), 1183- 1193.
  • 2[2]Crawford, Ian A., Nonparametric tests of stochastic dominance in bivariate distributions, with an application to UKdata, Working paper, The Institute for Fiscal Studies WP 28/99, 1999.
  • 3[3]Denuit, M. et al, Extremal generators and extremal distributions for continuous s-convex stochastic orderings, Insurance: Mathematics and Econometrics, 24(1999), 201-217.
  • 4[4]Denuit, M., The exponential premium calculation principle revisited, ASTIN Bulletin, 29(1)(1999), 215-226.
  • 5[5]Goovaerts, M.J., De Vylder F. and Haezendonck J., Ordering of risks: a review, Insurance: Mathematics and Econometrics, 1(1982), 131-163.
  • 6[6]Kass, R., A.E. Van Heerwaarden and M.J. Goovaerts, Ordering of Actuarial Risks, Education series 1, CAIRE, Brussels, 1994.
  • 7[7]Von Neumann, J., Morgensten, O., Theory of Games and Economic Behavior, 2nd ed, Princeton University Press, Princeton NJ, 1947.
  • 8[8]Wang, S. and Young, V.R., Ordering risks: Expected utility theory versus Yaari's dual theory of risk, Insurance: Mathematics and Econometrics, 22(1998), 145-161.
  • 9[9]Yarri, M.E., The dual theory of choice under risk, Econometrics, 55(1987), 95-115.

同被引文献14

  • 1王世华,周肇飞,周卫东,迟桂纯.激光表面粗糙度测量仪的研制[J].成都科技大学学报,1995(3):62-66. 被引量:7
  • 2徐新军,章钦,袁会敬,张国宏,李运恒.基于CPLD的线阵CCD驱动的实现[J].中国测试技术,2006,32(2):124-126. 被引量:6
  • 3DENG Xiao-tie,WANG Shou-yang,XIA Yu-sen.Criteria,models and strategies in portfolio selection[J].Advanced Modeling and Optimization,2000,2(2):79-103.
  • 4OGRYCZAK W,RUSZCZYNSKI A.From stochastic dominance to Mean-risk model:Semi-deviatlon as risk measure[J].European J,1999,116(1):33-50.
  • 5Gotoh J-y H K.Third degree stochastic dominance and MeanRisk analysis[J].Management Sei.,2000,46(2):289-301.
  • 6OGRYCZAK W,RUSZCZYNSKI A.Dual stochastic dominance and related Mean-risk models[J].SIAM J.Optim,2002,13 (1):66-78.
  • 7FISHBURN D C.Mean-risk snalsis with risk associated with below-target returns[J].American Eco.Rev.,1977,67(1):117-126.
  • 8LEVY H.Stochastic dominance and expected utility:survey and analysis[J].Management Sci.,1992,38(6):555-593.
  • 9BROCKET P L,KAHANE Y.Risk,return,skewness and preference[J].Management Sci.,1992,38(6):851-866.
  • 10Church E L,Jenkinson H A,Zarada J M.Relationship between surface scattering and micro-topographic features.Optical Engineering,1979,18(2):133-136.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部