摘要
利用重合度方法研究了一类具复杂偏差变元的非自治泛函微分方程x(t) = kx(t) + u(t)))((txgm + e(t)周期解的存在性,得到了方程具有周期解的充分条件.
By means of the theory of coincidence degree, in the paper the existence of periodic solutions in regard to the type of functional differential equations x(t) = kxn(t)+u(t)))((txgm+e(t) with complex deviating argument is studied, and the sufficient conditions of the equation for periodic solutions are acquired.
出处
《上海理工大学学报》
CAS
北大核心
2003年第1期1-4,共4页
Journal of University of Shanghai For Science and Technology
基金
上海市高等学校青年科学基金(02GQ24)
上海理工大学青年科研基金资助项目
关键词
泛函微分方程
重合度
周期解
functional differential equations
coincidence degree
periodic solutions