期刊文献+

基于深度学习的视频图像压缩编码方法优化 被引量:1

下载PDF
导出
摘要 随着互联网无线通信技术的不断发展,人们可以通过观看互联网视频、浏览图像信息等方式进行学习,但在这个过程当中,难免会遇到图像或视频所需的打开方式不被当前移动设备所支持的情况。本文对视频图像压缩编码原理进行了简单的介绍,并提出了一种新型的JND压缩编码模型,也通过实验证明了在所需压缩编码时间与解压成功率方面,该模型都比传统MDLVQ模型具备更高的实用可行性。
作者 姜涛 李婷婷
出处 《科技传播》 2017年第22期161-162,共2页 Public Communication of Science & Technology
  • 相关文献

参考文献2

二级参考文献26

  • 1BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 2COATES A, NG A Y, and LEE H. An analysis of single-layer networks in unsupervised feature learning[C]. Preceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, 2011: 215-223.
  • 3KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Preceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012: 1097-1105.
  • 4MASCI J, Meier U, CIREAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Preceedings of the 21st International Conference on Artificial Neural Networks, Espoo, 2011: 52-59.
  • 5LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11.
  • 6VINCENT P, LAROCHELLE H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.
  • 7YIN H, JIAO X, CHAI Y, et al. Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications, 2015, 42(7): 3368-3380.
  • 8ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.
  • 9L?NGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11.
  • 10LIU H L, Taniguchi T, TAKANO T, et al. Visualization of driving behavior using deep sparse autoencoder[C]. Preceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, 2014: 1427-1434.

共引文献25

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部