期刊文献+

改进的协同过滤算法在资源推荐系统中的应用研究 被引量:1

下载PDF
导出
摘要 文章研究了常用的推荐系统模型及协同过滤推荐算法,综合讨论分析了协同过滤算法应用于资源推荐时存在的问题,提出了一种改进的协同过滤推荐算法,根据输入的用户属性特征等信息,使用相似性计算公式获得相似用户群,建立最佳的邻居集合,解决传统算法中的冷启动问题,同时利用k-means聚类降低用户寻找最近邻所消耗的时间,解决了资源过载而带来的速度瓶颈问题。
出处 《科技传播》 2018年第18期155-156,167,共3页 Public Communication of Science & Technology
基金 2017年吉林省大学生创新创业训练计划项目"个性化推荐算法在在线学习交流系统中的应用研究" 项目编号:吉教高字【2017】54号3370
  • 相关文献

参考文献4

二级参考文献37

  • 1Xia Jianxun.An Improved Similarity Algorithm Based on Hesitation Degree for User-Based Collaborative Filtering [A]. Conference on Communication Faculty [C]. Nanning, PEOPLES R CHINA: Proceedings of 2009 Conference On Communication Faculty, 2009.104-108.
  • 2Ormandi,Robert;Hegedus,Istvan.Overlay Management for Fully Distributed User-Based Collaborative Filtering[A]. 16th Internalional Euro-Par Conference on Parallel Processing [C]. Ischia, ITALY: EURO-PAR 2010 PARALLEL PROCESSING PT 1,2010,446-457.
  • 3Zhao Zhi-Dan;Shang Ming-Sheng .User-based Collaborative- Fihering Recommendation Algorithms on Hadoop A]. 3rd International Conference on Knowledge Discovery and Data Mining [C]. Phuket, THAILAND: Third International Conference On Knowledge Discovery And Data Mining Proceedings,2010,478-481.
  • 4Mu,XW; Chen, Y. An Improved Similarity Algorithm Based on Hesitation Degree for User-Based Collaboralive Filtering [A]. 5th International Symposium on Intelligence Computation and Applications [C]. Wuhan, PEOPLES R CHINA: Advances In Computation And Intelligence,2010,261-271.
  • 5Luo,Q;Tian,X.A Personalized Recommendation Algorithm Combining Slope One Scheme and User Based Collaborative Filtering [A] International Conference on Industrial and Information Systems [C] Hankou,China: 2009 International Conference On Industrial And Information System,Proceeding,2009,152-154.
  • 6Lei Ren; Junzhong Gu.An Item-based Collaborative Filtering Approach based on Balanced Rating Prediction [A] 2011 Internation Conference on Multimedia Technology [C].Hangzhou, China: 2011 International Conference on Muhimedia Technology, 2011.
  • 7Gao,M; Wu, ZF.Userrank for item-based collaborative filtering recommendation[J]. Information Processing Letters,2011,(9):440-446.
  • 8Coldberg D, Nichols D, Oki B, et al. Using collaborative filtering to weave an information tapestry [J]. Communications of the ACM, 1992,35(12) :61-70.
  • 9Sarwar B M, Karypis G, Konstan J, et al. Application of dimen- sionality reduction in recommender system - A Case Study [C]// Proceedings of the ACM Web KDD Web Mining for ECom- merce Work shop. Boston, MA, United States, 2000 : 82- 90.
  • 10Massa P, Avesani P. Trust Aware Collaborative Filtering for Recommender Systems[J]. Lecture Notes in Computer Science, 2004,3290 : 492-508.

共引文献67

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部