摘要
提出了一种基于栈式自编码器与支持向量机的低截获概率(LPI)雷达信号识别方法。首先,通过Choi-Williams图像预处理方法对时频图像进行处理,得到便于自编码器处理的图像;再次,使用栈式自编码器从预处理后的时频图像中自动地提取出信号特征;最后,基于提取的信号特征使用支持向量机(SVM)对信号进行分类。本方法使用任意波形发生器(AWG)模拟产生了8类LPI雷达信号,采用栈式自编码器与支持向量机相结合的方法识别信号。仿真实验结果表明,该方法能够在低信噪比和小样本情形下有效识别LPI雷达信号。
A radar signal recognition method of low probability of intercept(LPI) based on the stacked autoencoder and the support vector machine is proposed. First, the signal is transformed to the time-frequency(T-F) domain to obtain the T-F images through the ChoiWilliams Distribution. Second, image processing methods are used to process the T-F images. Then, the stacked autoencoder is used to extract features from the preprocessed images. Finally, the support vector machine(SVM) is used to recognize the signal. The method uses the arbitrary waveform generator(AWG) to generate eight kinds of LPI radar signals and uses the stacked autoencoder combined with the SVM to recognize the signal. Simulation results show that the method can effectively classify the LPI radar signal in low SNR and small sample situations.
作者
张穆清
王华力
倪雪
ZHANG Muqing;WANG Huali;NI Xue(College of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,China)
出处
《科技导报》
CAS
CSCD
北大核心
2019年第4期69-75,共7页
Science & Technology Review
基金
国家自然科学基金项目(61271354)
关键词
低截获概率雷达信号
自编码器
支持向量机
小样本
low probability of intercept radar signal
autoencoder
support vector machine
small sample