期刊文献+

基于深度学习与支持向量机的低截获概率雷达信号识别 被引量:7

The LPI radar signal recognition based on deep learning and support vector machine
原文传递
导出
摘要 提出了一种基于栈式自编码器与支持向量机的低截获概率(LPI)雷达信号识别方法。首先,通过Choi-Williams图像预处理方法对时频图像进行处理,得到便于自编码器处理的图像;再次,使用栈式自编码器从预处理后的时频图像中自动地提取出信号特征;最后,基于提取的信号特征使用支持向量机(SVM)对信号进行分类。本方法使用任意波形发生器(AWG)模拟产生了8类LPI雷达信号,采用栈式自编码器与支持向量机相结合的方法识别信号。仿真实验结果表明,该方法能够在低信噪比和小样本情形下有效识别LPI雷达信号。 A radar signal recognition method of low probability of intercept(LPI) based on the stacked autoencoder and the support vector machine is proposed. First, the signal is transformed to the time-frequency(T-F) domain to obtain the T-F images through the ChoiWilliams Distribution. Second, image processing methods are used to process the T-F images. Then, the stacked autoencoder is used to extract features from the preprocessed images. Finally, the support vector machine(SVM) is used to recognize the signal. The method uses the arbitrary waveform generator(AWG) to generate eight kinds of LPI radar signals and uses the stacked autoencoder combined with the SVM to recognize the signal. Simulation results show that the method can effectively classify the LPI radar signal in low SNR and small sample situations.
作者 张穆清 王华力 倪雪 ZHANG Muqing;WANG Huali;NI Xue(College of Communication Engineering,Army Engineering University of PLA,Nanjing 210007,China)
出处 《科技导报》 CAS CSCD 北大核心 2019年第4期69-75,共7页 Science & Technology Review
基金 国家自然科学基金项目(61271354)
关键词 低截获概率雷达信号 自编码器 支持向量机 小样本 low probability of intercept radar signal autoencoder support vector machine small sample
  • 相关文献

参考文献2

二级参考文献23

  • 1姚宝恒,杨霞菊,刘岩,佟德纯,陈兆能,孟光.基于奇异谱熵的相空间重构最佳时间延迟选择[J].上海交通大学学报,2005,39(1):150-153. 被引量:8
  • 2张葛祥,胡来招,金炜东.基于熵特征的雷达辐射源信号识别[J].电波科学学报,2005,20(4):440-445. 被引量:60
  • 3关欣,何友,衣晓.一种新的雷达辐射源识别算法[J].宇航学报,2005,26(5):612-615. 被引量:11
  • 4张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别[J].电路与系统学报,2006,11(6):45-49. 被引量:35
  • 5Granger E, Rubin M A, Grossberg S, et al. A what and where fitsion neural network for recognition and track [ J ]. Neural Networks, 2001. 14(3) : 325 -344.
  • 63hayaparml T, Stankovic L, Amin M, et al. Time-frequency approach to radar detection, imaging, and classification [ J ]. IET Signal Processing, 2010,4(4) :325 -328.
  • 7Du P M C, Olivier J C. Radar transmitter classification using a non- stationary signal classifier[ C]. The 2009 International Conference on Wavelet Analysis and Pattern Recognition, Pretoria, South Mrica , 12 - 15 July 2009.
  • 8Gulum T 0. Autonomous non-linear classification of LPI radar signal modulation [ D ]. Monterey, California, Naval Postgraduate School, 2007:55 -59.
  • 9Lunden J, Koivunen V. Automatic radar waveform recognition [ J]. IEEE Transactions on Signal Processing, 2007,45 (2) :316- 327.
  • 10Hussain Z, Boashash B. Adaptive instantaneous frequency estimation of multi-component FM signals using quadratic time frequency distributions[J]. IEEE Trans. Sisal Process, 2002, 50(8) : 1866 - 1876.

共引文献28

同被引文献93

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部