期刊文献+

RBF神经网络在高职院校教师质量评价体系中的应用 被引量:1

Application of RBF Neural Network in the Evaluation System of Teachers' Quality in Higher Vocational Colleges
下载PDF
导出
摘要 高职院校教学质量是其生存和发展的基础,而教师质量是高职院校办学质量保障体系中的重要组成部分。为了客观、多元化的评价教师质量,真实反映教师水平和能力,本文首先提出高职院校教师质量评价体系和指标,再通过RBF神经网络理论确立基于RBF神经网络的高职院校教师质量评价模型,并经样本数据进行仿真验证。通过仿真数据表明,该模型能够较全面、科学地评价教师质量。 The quality of teaching in higher vocational colleges is the basis of its survival and development,and the quality of teachers is an important part of the quality assurance system in Higher Vocational colleges.In order to objectively and diversified evaluation the quality of teachers,teachers reflect the level and ability of teachers in higher vocational colleges,this paper puts forward the quality evaluation system and index,and then through the RBF neural network theory to establish the vocational college teachers RBF neural network evaluation model based on quality,and is verified by the sample data.The simulation results show that the model can comprehensively and scientifically evaluate the quality of teachers.
出处 《科教导刊》 2017年第2Z期72-73,170,共3页 The Guide Of Science & Education
基金 2016年四川教育发展研究中心立项课题:高职院校创业教育教学体系的改革研究(编号:CJF16012)
关键词 质量评价 RBF神经网络 指标体系 quality evaluation RBF Neural Network index system
  • 相关文献

参考文献8

二级参考文献64

  • 1李映颖,朱立贵,张德全,姚本军,杜友杰,冯彪.基于BP和RBF神经网络对试飞数据预处理比较研究[J].计量与测试技术,2009,36(2):1-2. 被引量:6
  • 2陈力捷.基于神经网络的教学质量评估模型[J].职业教育研究,2005(7):150-151. 被引量:12
  • 3王英,帅全锋.高校社会服务职能特点及评价探析[J].邯郸学院学报,2006,16(2):56-59. 被引量:26
  • 4叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 5何灿芝.应用统计学[M].长沙:湖南大学出版社,2003.210-211.
  • 6Luengo J, Garcla S, Herrera F. A study on the use of imputa- tion methods for experimentation with radial basis function network classifiers handling missing attribute values: the good synergy between RBFNs and EventCovering method. Neural Networks, 2010, 23(3): 406-418.
  • 7Ferrari S, Bellocchio F, Piuri V, Borghese N A. A hierarchi- cal RBF online learning algorithm for real-time 3-D scan- ner. IEEE Transactions on Neura! Networks, 2010, 21(2): 275-285.
  • 8Peng H, Wu J, Inoussa G, Deng Q L, Nakano K. Nonlinear system modeling and predictive control using the RBF nets- based quasi-linear ARX model. Control Engineering Prac- tice, 2009, 17(1): 59-66.
  • 9Bortman M, Aladjem M. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks, 2009, 20(6): 1039-1045.
  • 10Platt J. A resource-allocating network for function interpob lation. Neural Computation, 1991, 3(2): 213-225.

共引文献161

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部