期刊文献+

大型自动化过程控制流程优化调度模型仿真

Simulation of Large Scale Automation Process Control Process Optimization Scheduling Model
下载PDF
导出
摘要 传统的过程控制和作业调度方法采用基于多线程集群聚类的任务调度方法,对多用户、多任务的大型自动化过程控制的调度性能不好。提出基于主特征支配集分簇提取的大型自动化过程控制流程优化调度模型。构建大型自动化过程控制模型,进行优化控制目标函数构建,实现控制流程的优化调度模型改进,最后通过仿真实验进行了性能验证。仿真结果表明,该算法能优化自动化过程控制流程,在提高生产效率,优化工业自动化过程控制方面具有重要应用价值。 Traditional process control and job scheduling method based on multi-threading set clustering task scheduling method, large automation of users, the task scheduling performance of process control is bad. Put forward based on the characteristics of dominating sets clumps and extraction of large automation process control process optimization scheduling model. Building large automation process control model for optimal control objective function building, to achieve the optimal scheduling model of control process improvements, the performance verification by simulation experiment. The simulation results show that the algorithm can optimize the automation process control process, to improve the production efficiency, optimize the industrial automation process control has important application value.
作者 任铭
出处 《科教导刊》 2015年第10期59-60,共2页 The Guide Of Science & Education
关键词 自动化 过程控制 特征提取 调度 automation process control feature extraction scheduling
  • 相关文献

参考文献5

二级参考文献46

  • 1王小非,方明.一种基于调度簇树的周期性分布实时任务调度算法[J].计算机科学,2007,34(3):256-261. 被引量:3
  • 2LinC, Lu S Y, Fei X B, Chebotko A, Pai D, Lai Z Q, Fotouhi F, Hua J. A reference architecture for scientific workflow management systems and the view soa solution. IEEE Transactions on Service Computing, 2009, 2(1): 79-92.
  • 3Ren K J, Chen J J, Xiao N, Song J Q. Building quick service query list (QSQL) to support automated service discovery for scientific workflow. Concurrency and Computation: Practiee Experience, 2009, 21(16): 2099-2117.
  • 4Weiss A. Computing in the cloud. ACM Networker, 2007, 11:18-25.
  • 5Chervenak A, Deelman E, Livny M, Su M H, Schuler R, Bharathi S, Mehta G, Vahi K. Data placement for scientific applications in distributed environments//Proceedings of the8th IEEE/ACM International Conference on Grid Compu- ting. Washington, USA, 2007:267-274.
  • 6Singh G, Vahi K, Ramakrishnan A, Mehta G, Deelman E, Zhao H N, Sakellariou R, Blackburn K, Brown D, Fairhurst S, Meyers D, 13erriman G. 13, Good J, Katz D S. Optimizing workflow data footprint. Scientific Programming, 2007, 15(7) : 249-268.
  • 7DuZH, HuJK, ChenYN, ChengZL, WangXY. Opti- mized QoS-aware replica placement heuristics and applica- tions in astronomy data grid. The Journal of Systems and Software, 2011, 84(7): 1224-1232.
  • 8Fedak G, He H, Cappello F. BitDew.- A programmable environment for large-scale data management and distribu- tion//Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Austin, USA, 2008:1-12.
  • 9Gu Y, Grossman R. Toward efficient and simplified distribu- ted data intensive computing. IEEE Transactions on Parallel And Distributed Systems, 2011, 22(6): 974-984.
  • 10Gu Y, Grossman R. UDT: UDP-based data transfer for high-speed wide area networks. Computer Networks, 2007, 51(7) : 1777-1799.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部