期刊文献+

军事信息系统中基于内容流行度的情报分发模型研究 被引量:2

Research on Intelligence Distribution Model Based-on Content Popularity in Military Information System
下载PDF
导出
摘要 军事移动应用环境的特点和对情报服务的特殊需求,对传统的集中存储+发布/订阅的情报分发方式提出了新的挑战。为了提高情报服务的时效性,减少对通信带宽的占用,降低情报服务器负载,本文参考内容中心网络架构,设计了包含"情报服务中心-情报服务站-情报用户"三个层级的移动情报服务系统模型以及情报缓存节点模型;提出了基于在线学习的情报内容流行度估计函数,并在此基础上,提出了基于内容流行度的情报分发算法。最后,通过仿真试验对比分析了新提出算法和传统算法的缓存命中率和收敛速度两个性能指标,验证了新的情报分发算法的有效性。 The characteristic of tactical application and the requirement of intelligence service,challenge the traditional way of intelligence distribution.In order to improve the efficiency of intelligence service,cut the cost of communication bandwidth,and decrease the overload of intelligence server,according to the architecture of content-centric networking,we propose a kind of three\level model of tactical intelligence service system,including intelligence service center,intelligence service station and intelligence user.We develop a popularity evaluating function for intelligence contents based on online learning.We propose an intelligence distribution algorithm based on content popularity.At last,we develop a simulator that implements the proposed algorithm and several classic algorithms to evaluate the performance using the metrics of overall cache hit ratio and convergence speed.The simulation results show that the proposed algorithm outperforms the other referenced ones.
作者 杨慧杰 刘娜 李国栋 陈健军 YANG Hui-jie;LIU Na;LI Guo-dong;CHEN Jian-jun(China Academy of Electronic and Information Technology,Beijing 100041,China)
出处 《中国电子科学研究院学报》 北大核心 2019年第3期225-231,237,共8页 Journal of China Academy of Electronics and Information Technology
基金 国家自然科学基金(16103601)
关键词 军事信息系统 情报分发 内容流行度 内容缓存 Military Information System Intelligence Distribution Content Popularity Content Cache
  • 相关文献

参考文献6

二级参考文献43

  • 1宋丽哲,牛振东,余正涛,宋瀚涛,董祥军.一种基于混合模型的用户兴趣漂移方法[J].计算机工程,2006,32(1):4-6. 被引量:18
  • 2刘觅,彭木根,王文博.基于IEEE802.16-2004标准的Mesh机制[J].中国电子科学研究院学报,2006,1(1):75-80. 被引量:6
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 4Choi S H, Jeong Y S, Jeong M K. A hybrid recommendation method with reduced data for large-scale application [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C : Application and Reviews, 2010,40 (5) :557-566.
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (6) :734-749.
  • 6Degemmis M, Lops P, Semeraro G. A content-collaborative recommender that exploits wordNet-based user profiles for neighborhood formation[J]. User Modeling and User-Adap- ted Interaction, 2007,17 (3) :217-255.
  • 7Kim S B, Han K S, Rim H C, et al. Some effective tech- niques for naive bayes text classification [ J ]. IEEE Transac- tions on Knowledge and Data Engineering, 2006,18 ( 11 ) : 1457-1466.
  • 8Aidaroos K A, Baker A A, Othman Z. Data classification u- sing rough sets and na'l"ve bayes [ J ]. Lecture Notes in Com- puter Science, 2010,6401 ( 1 ) : 134-142.
  • 9Al-Aidaroos K M, Bakar A A, Othman Z. Naive bayes vari- ants in classification learning[C]//2010 International Con- ference on Information Retrieval & Knowledge Management. [S. l. ] : IEEE Press, 2010:276-281.
  • 10Zaier Z, Godin R, Faucher L. Evaluating recommender systems[ C ]//International Conference on Automated solutions for Cross Media Content and Multi-channel Distribution. [ S. l. ] : IEEE Press, 2008: 211-217.

共引文献16

同被引文献49

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部