期刊文献+

一种基于前后向Toeplitz矩阵重构的相干信号DOA估计算法 被引量:5

DOA Estimation of Coherent Signals Based on Forward and Backward Toeplitz Matrix Reconstruction
下载PDF
导出
摘要 本文提出了一种新的相干信号DOA估计算法,首先将数据协方差矩阵的一行重构成Toeplitz矩阵以消除信号源之间的相干性;再利用前后向空间平滑的思想构造后向Toeplitz矩阵,以提高数据利用率;鉴于Toeplitz矩阵具有相同的联合对角结构,利用此结构设计代价函数,最后通过一维搜索得到新的空间谱。本文所提算法无需信号源数的先验信息,较以往算法精度和鲁棒性有较大提升,实验结果验证了算法的有效性。 In this paper,a new DOA estimation algorithm of coherent signals is proposed.The algorithm firstly reconstructs a row of data covariance matrix into Toeplitz matrix to eliminate the coherence between signal sources,and then constructs a backward Toeplitz matrix by using the idea of forward and backward spatial smoothing to improve data utilization.These Toeplitz matrices have the same joint diagonal structure,which is used to design the cost function and then obtain a new spatial spectrum through one-dimensional search.The proposed algorithm does not need a priori information of the number of signal sources,and the accuracy and robustness of the algorithm are greatly improved.The experimental results verify the effectiveness of the algorithm.
作者 唐晓杰 赵迪 何明浩 袁浩 薛永辉 TANG Xiao-jie;ZHAO Di;HE Ming-hao;YUAN Hao;XUE Yong-hui(Air Force Early Warning Academy,Hubei Wuhan430019,China;31435 Unit of Army,PLA,Liaoning Shenyang110000,China;CSIC(Wuhan)Lincom Electronics Company Limited of China Shipbuilding Industry Corporation,Hubei Wuhan430019,China)
出处 《中国电子科学研究院学报》 北大核心 2019年第8期823-829,共7页 Journal of China Academy of Electronics and Information Technology
关键词 DOA估计 相干信号 前后向Toeplitz矩阵 DOA estimation coherent signals forward and backward Toeplitz matrix
  • 相关文献

参考文献2

二级参考文献23

  • 1CHEN FANGJIONG, KWONG SAM, KOK CHAIWAH. ESPRIT-Like Two-Dimensional DOA Estimation for Coher- ent Signals [ J]. IEEE Transactions on Aerospace and Elec- tronic Systems ,2010,46 ( 3 ) : 1 477-1 484.
  • 2LIANG JUNLI, LIU DING. Joint Elevation and Azimuth Di- rection Finding Using L-Shaped Array [ J ]. IEEE Transac- tions on Antennas and Propagation,2010,58 (6) :2 136- 2 141.
  • 3Y-IN JIHAO, CHEN TIANQI. Direction-of-Arrival Estima- tion Using a Sparse Representation of Array Covariance Vec- tors[ J]. IEEE Transactions on Signal Processing,2011,59 (6) :4 489-4 493.
  • 4SCHMIDT R. O. Multiple Emitter Location and Signal Pa- rameter Estimation [ J ]. IEEE Transactions, 1986, AP-34 (3) : 276-280.
  • 5ROY R K T. ESPRIT-a Subspace Approach to Estimation of Parameters of Vissoids in Noise [ J ]. IEEE Transactions on ASSP,1986,34(10):1 340-1 342.
  • 6MALIOUTOV D, (~ETIN M, WILLSKY A S. A Sparse Sig- nal Teconstruction Perspective for Source Localization with Sensor Arrays [ J ]. IEEE Transactions on Signal Process- ing,2005, 53(8) : 3 010-3 022.
  • 7GUO XIANSHENG,WAN QUN,CHANG C. Source locali- zation Using a Sparse Representation Framework to Achieve Super Resolution[ J]. Multi-Dimensional Systems and Sig- nal Processing,2010,21 (4) : 391-402.
  • 8TANG ZIJIAN, GERRIT BLACQUII~RE, LEUS G. Alias- ing-Free Wideband Beamforming Using Sparse Signal Tepr- esentation[ J]. IEEE Transactions on Signal Processing, 2011,59(7) :3 464-3 469.
  • 9LIU ZHANG-MENG, HUANG ZHI-TAO,ZHOU Y. Direc- tion-of-Arrival Estimation of Wideband Signals via Covari- ance Matrix Sparse Representation[ J ]. IEEE Transactions on Signal Processing,2011,59 ( 9 ) :4 256-4 270.
  • 10NIZAR TAYEM, HYUCK M. Kwon, L-Shape 2-Dimension- al Arrival Angle Estimation With Propagator Method [ J ]. IEEE Transactions on Antennas and Propagation,2005,53 ( 5 ) _. 1 622-1 630.

共引文献4

同被引文献36

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部