期刊文献+

基于机器视觉的海上目标智能化预警观测过程模型与技术方法 被引量:4

A General Approach for Automatic Marine Target Monitoring and Tracking Based on Machine Vision
下载PDF
导出
摘要 海洋态势感知与目标观测技术正向着自动化、智能化发展。光电监控系统作为海洋目标活动态势感知中不可或缺的必要手段,在面向长期无人值守的持续海上预警观测应用场景中,其自主运行能力受到极大考验。本文基于多年研究以及相关项目实践,提出了基于机器视觉的海上目标智能化预警观测的一般过程模型与相关的技术实现方法,通过基于深度学习的目标识别模型和一体化的联动跟踪机制驱动光电传感器智能自主运行,在全自动托管的情况下实现目标发现、跟踪、识别、取证、再发现闭环持续工作,为海上目标活动视觉特征提取与信息服务提供有力支撑。 Maritime state awareness and marine object observation technology are developing towards automation and intellectualization.For the photoelectric monitoring system,which is the core means of maritime state awareness and target activity forensics,the ability of autonomous operation is greatly tested under the actual situation of long-term unattended observation.Based on many years of research and related project practice,this paper presents the general process and technical method of intelligent early warning and observation of marine targets based on machine vision.The intelligent autonomous operation of photoelectric sensors is driven by the target recognition model based on deep learning and the integrated linkage tracking mechanism,which provides strong support for visual feature extraction and information service of marine target activities.
作者 应文 杨志霞 符亚明 杨建平 YING Wen;YANG Zhi-xia;FU Ya-ming;YANG Jian-ping(China Academy of Electronic and Information Technology,Beijing100041,China;CETC Ocean Information Co.,Ltd,Beijing100041,China;China University of Geosciences,Hubei Wuhan430074,China)
出处 《中国电子科学研究院学报》 北大核心 2019年第8期860-869,共10页 Journal of China Academy of Electronics and Information Technology
关键词 海上态势感知 智能化管控 机器视觉 光电监控系统 Maritime State Awareness Intelligent Management and Control Machine Vision Photoelectric Monitoring System
  • 相关文献

参考文献3

二级参考文献49

  • 1邓小青.太阳能自主水下航行器[J].水雷战与舰船防护,2012(1):93-98. 被引量:1
  • 2宋克欧,黄凤岗,朱铁一.二值图像目标质心快速下降迭代搜索算法[J].模式识别与人工智能,1994,7(2):143-149. 被引量:8
  • 3Chui Charles K. An Introduction to Wavelet [M]. Boston:Academic Press, 1992. 198~217
  • 4Fuh Chiou-shann, Liu Horng-bin. Projection for pattern recognition [J]. Image and Vision Computer, 1998, 16(9~10): 677~687
  • 5Zhou ChangFa. Mastery of Image Programming with VC++[M]. Beijing: Publishing House of Electronics Industry, 1999(in Chinese)(周长发.精通VC++图像编程[M].北京:电子工业出版社,1999)
  • 6Dai M, Baylou P, Najim M. An efficient algorithm for computation of shape moments from run-length codes or chain codes[J]. Pattern Recognition, 1992, 25(10): 1119~1128
  • 7Li B C. A new computation of geometric moments[J]. Pattern Recognition, 1993, 26(1): 109~113
  • 8Philips W. A new fast algorithm for moment computation[J]. Pattern Recognition, 1993, 26(11): 1619~1621
  • 9Li B C, Shen J. Fast computation of moment invariants[J]. Pattern Recognition, 1991, 24(8): 807~813
  • 10Yang Luren, Albregtsen Fritz. Fast and exact computation of Cartesian geometric moments using discrete Green's theorem[J]. Pattern Recognition, 1996, 29(7): 1061~1073

共引文献130

同被引文献21

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部