期刊文献+

DGM和RVM融合的电动汽车电池寿命预测研究 被引量:2

Research on Battery Life Prediction of Electric Vehicle Based on DGM and RVM
下载PDF
导出
摘要 电池寿命预测已经成为指导电池安全运行维护的一个重要依据,针对相关向量机(relevance vector machine,RVM)和灰色模型(grey model,GM)等传统方法中存在的长期预测能力差和预测精度低、稳定性不高等问题,提出了一种离散灰色模型(diecrete grey model,DGM)和RVM融合的电池寿命预测方法,该方法利用DGM的动态更新提高了RVM的预测精度,从而解决了电动汽车预测精度不高和稳定性差的问题,实验结果证明,电动汽车电池寿命预测能力得到了极大的提高,其预测精度可达95%以上,完全满足电动汽车电池运行维护的要求。 Battery life prediction has become an important basis for guiding the safe operation and maintenance of the battery. The long-term predictive ability of the relevance vector machine is poor. The prediction accuracy and stability of gray model is low. In response to these problems, a battery life prediction method based on discrete gray model and RVM is proposed in this paper. This method improves the prediction accuracy of RVM by dynamic updating DGM. It solves the problems of low prediction accuracy and low stability for electric vehicles. The experimental results show that the battery life prediction ability of electric vehicle has been greatly improved and the prediction accuracy up to 95%. It fully meets the requirements of operation and maintenance of battery for electric vehicle.
机构地区 商丘工学院
出处 《科技通报》 2018年第10期121-124,共4页 Bulletin of Science and Technology
基金 河南省高等学校重点科研项目(项目编号:15A480012)
关键词 RVM DGM 寿命预测 BMS RUL RVM DGM Life Prediction BMS RUL
  • 相关文献

参考文献4

二级参考文献129

  • 1安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J].电源技术,2006,30(1):70-73. 被引量:22
  • 2戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:45
  • 3于智龙,王伟力.锂离子电池容量快速预测的新方法[J].电源技术,2007,31(9):744-746. 被引量:6
  • 4谭维炽,胡金刚.航天器系统工程[M].北京:科学技术出版社,2009.
  • 5胡士强,敬忠良.粒子滤波原理及其应用.科学出版社,2010:85-93.
  • 6LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [ J ]. Journal of Power Sources, 2013, 226: 272-288.
  • 7STUART T, FANG F, WANG X, et al. A modular bat- tery management system for HEVs [ C~. In Proceedings of the SAE Future Car Congress, Arlington, VA, USA, 2002 : 1-9.
  • 8GOEBEL K, SAHA B, SAXENA A, et al. Christophers- en prognostics in battery health management [ J ]. IEEE Instrumentation and Measurement Magazine, 2008, 11 (4) : 33-40.
  • 9WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion bat- tery reliability[ J]. Energies, 2013, 6 (9) : 4682-4695.
  • 10JOHNSON S B, GORMLEY T J, KESSLER S S, et al. sys- tem health management with aerospaoce applications [ M ]. United Kingdom: John Wiley & Sons, Ltd, West Sussex, 2011.

共引文献188

同被引文献23

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部