期刊文献+

基于IPSO算法的非晶合金变压器优化设计 被引量:1

Optimal Design of Amorphous Alloy Transformer Using Improved Particle Swarm Optimization
下载PDF
导出
摘要 针对目前变压器设计效率低,以节能型三相非晶合金铁心油浸式变压器(以下简称非晶油变)为设计对象。在人工设计和使用循环遍历法的基础上,提出将改进的粒子群算法(improved particle swarm optimization,IPSO)应用于10KV配电变压器的优化设计。得出变压器在手工设计、循环遍历法和IPSO算法优化后的主要性能参数及优化数据。仿真结果表明,IPSO算法比其他两种方法更有助于改善非晶油变的空载损耗、负载损耗、短路阻抗、绕组对油温升和节约主材成本。 To deal with the low efficiency of transformer design, take the energy-saving three-phase amorphous alloy core oil-immersed transformer as the design example. Based on the manual design and use the cyclic traversal method, the improved particle swarm optimization(IPSO) is proposed to apply in optimize the design of 10 KV distribution transformer. The main performance parameters and optimization data of the transformer are optimized by manual design, cyclic traversal and IPSO. The simulation results show that the IPSO algorithm can improve the no-load loss, load loss, short circuit impedance, winding to oil temperature rise and save the cost of the main material.
出处 《科技通报》 2018年第11期120-124,共5页 Bulletin of Science and Technology
基金 国家自然科学基金资助项目(51365017) 江西省自然科学基金(20132BAB203020) 江西省教育厅科学技术研究(GJJ13430)
关键词 IPSO 非晶合金变压器 优化设计 循环遍历法 IPSO amorphous alloy transformer optimum design cyclic traversal
  • 相关文献

参考文献1

二级参考文献14

  • 1中国统计年鉴[R].中国国家统计局.2012.
  • 2Jabr R A. Application of geometric programming to transformer design[J]. IEEE Transactions on Magnetics, 2005, 41: 4261-4269.
  • 3Amoiralis E I, Georgilakis P S, Tsili M A. Design optimization of distribution transformers based on mixed integer programming methodology[J].Journal of Optoelectronics and Advanced Materials, 2008, 10(5): 1178-1183.
  • 4Amoiralis E I, Georgilakis P S, Tsili M A, et al. Global transformer optimization method using evolutionary design and numerical field computation[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1720-1723.
  • 5Amoiralis E I, Tsili M A, Georgilakis P S, et al. Ant colony solution to optimal transformer sizing problem[C]. IEEE EPQU, 2008: 1-6.
  • 6Dos Santos Coelho L, Mariani V C, Da Luz M V F, et al. Novel Gamma differential evolution approach for multiobjective transformer design optimization[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2121-2124.
  • 7Subramanian S, Padma S. Optimal design of single phase transformer using bacterial foraging algorithm[J]. InternationalJournal of Engineering Science, 2011,3: 2667-2684.
  • 8SunJ, Xu W, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]. IEEE Conference on Cybernetics and Intelligent Systems, 2004: 111-116.
  • 9Amoiralis E I, Georgilakis P S, Tsili M A, et al. Global transformer optimization method using evolutionary design and numerical field computation[J]. IEEE Transactions on Magnetics, 2009, 45: 1720-1723.
  • 10Georgilakis P S. Genetic algorithm model for profit maximization of generating companies in deregulated electricity markets[J]. Applied Artificialintelligence, 2009, 23(6): 538-552.

共引文献19

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部