期刊文献+

一种新的电力系统优化任务调度算法研究 被引量:4

A New Task Scheduling Algorithm for Power System Optimization
下载PDF
导出
摘要 智能电网的调度系统中,存在着巨大的时变调度数据,怎样使用这些数据完成对实时电网信息的提取是本文主要的研究方向。智能电网调度云计算中主要的核心问题就是对电网调度算法的选取,因此,在分析传统方法的基础之上,本文将使用调度中的资源来对电网调度任务进行映射,实现出实数编码。依据编码规则,在进行映射时把所有的大任务分成多个子任务,再依据这些子任务的数量来为染色体的长度进行定义,染色体中对应的基因就是在网络资源中子任务的编号。改进后的遗传算法(IGA)能将种群搜索应用到各个环节中去,改进了传统的调度算法,使得任务完成时间缩短,收敛的速度得到了提高,仿真实验结果表明本文提出的电力系统优化任务调度算法为整个调度系统提高了性能,进一步优化了负载均衡。 There are huge time-varying scheduling data in smart grid scheduling system.How to use these data to extract real-time power grid information is the main research direction in this paper.The main core of smart grid scheduling in cloud computing is the selection of grid scheduling algorithm,therefore,this paper will improve of the shortcomings of existing scheduling algorithms,based on the analysis of the traditional methods,this paper will use the scheduling resources on grid scheduling task mapping,to achieve the real number encoding.According to the coding rule,we divide all the big tasks into many sub tasks while mapping,then we define the length of chromosomes based on the number of these sub tasks.The corresponding genes in chromosomes are the number of neutron tasks in network resources.The improved genetic algorithm(IGA)can be applied to various aspects of population search to improve the traditional scheduling algorithm,the task completion time is shortened,the convergence speed is improved.The simulation results show that the proposed power system optimization scheduling algorithm for the scheduling system to improve performance and optimize the load balance.
作者 孙洪波 梁文举 陶凛 杜代华 Sun Hongbo;Liang Wenjv;Tao Lin;Du Daihua(State Grid Chongqing Electric Power Company,Chongqing400015,China;Institute of Economics and Technology,State Grid Chongqing Electric Power Company,Chongqing400014,China)
出处 《科技通报》 2019年第3期90-94,共5页 Bulletin of Science and Technology
关键词 电力系统 任务调度 遗传算法 负载均衡 power system task scheduling Genetic algorithm load balancing
  • 相关文献

参考文献1

二级参考文献5

  • 1CHIEN A, CALDER B, ELBERT S,et ol. Entropia: Ar-chitecture and Performance of An Enterprise DesktopGrid System [J]. Journal of Parallel and Distributed Com-puting, 2003, 63(5):597-610.
  • 2ROCHWERGER B, BREITGAND D,LEVY E, et d. TheReservoir Model and Architec -ture for Open FederatedCloud ComputingfJ]. IBM Journal of Research and Devel-opment, 2009, 53(4):1-17.
  • 3ALI S,SIEGEL H J, MAHESWARAN M, et al. Repre-senting Task and Machine Heterogen -eities for Hetero-geneous Computing systems [J]. Journal of Science andEngineering, 2000, 3(3): 195-207.
  • 4王刚,钟志水,黄永青.基于蚁群遗传算法的网格资源调度研究[J].计算机仿真,2009,26(4):240-243. 被引量:24
  • 5乌岚.基于多样约束模型的远程教育数据库优化查询算法[J].科技通报,2013,29(1):154-156. 被引量:35

共引文献11

同被引文献44

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部