期刊文献+

除环上全阵环的直积

Direct Product of Matrix Rings over Division Rings
下载PDF
导出
摘要 本文给出了一个环为除环上全阵环的直积和一个环为有单位元的单环之直积的充要条件。 Let R be a ring. We prove:1. R≌multiply from i∈1 R_i, where R_i is a simple ring with identity, iff there exists a set {f_α}α∈J of central idempotent elements of R satisfying (1) for any {γ_α}α∈J (?) R there exists only a γ∈R such that e_αr=e_αγ_α for each α∈J; (2) every principal ideal of R contained in f_αR is generated by a central idempotent element; (3) every set of central orthogonally idempotent elements of R contained in f_αR is finite one.2. R≌multiply from i∈1 R_i, where R_i is a Artinean simple ring, iff there exists a set {f_α}α∈J of central idempotent elements of R satisfying (1) (as 1, (1)) ; (2) every principal right ideal of R contained in f_αR is generated by a idempotent element; (3) every set of orthogohally idempotent elements of R contained in f_αR is finite.
作者 郭元春
机构地区 吉林大学数学系
出处 《吉林大学自然科学学报》 CAS CSCD 1989年第4期37-44,共8页 Acta Scientiarum Naturalium Universitatis Jilinensis
关键词 除环 全阵环 单环 直积 division ring, matrix ring, simple ring, direect product.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部