期刊文献+

氨基酸序列的特征描述 被引量:4

Characteristic description of amino acid sequences
原文传递
导出
摘要 氨基酸序列的特征描述是指从一条氨基酸序列选取相关的特征信息并用数学方法描述这些信息,使之能正确反映序列与结构或功能之间的关系。在根据氨基酸序列预测蛋白质的结构类或亚细胞位置等问题中,氨基酸序列的特征描述直接影响预测质量;同时比较不同描述方法对预测结果的影响可以帮助我们理解序列与结构或序列与功能之间的关系。本文介绍了几种氨基酸序列的特征描述方法,以FDOD方程作为判别函数,比较了其中几种描述方法对蛋白质结构类预测结果的影响,发现二级结构单纯的全α类和全β类蛋白质对于氨基酸组成比较敏感,而对于混合型蛋白质,即α+β类和α/β类蛋白质,考虑氨基酸残基排列顺序可以显著提高预测结果。 Given an amino acid sequence, what features should be derived from it and how to formulize these features so as to represent the relationship between the sequence and the structure or function of the corresponding protein correctlyβ This is the problem of characteristic description of the amino acid sequence. In the studies of protein structural classes prediction and prediction of protein subcellular location the characteristic description of the amino acid sequences decides the quality of a prediction method. Moreover, comparing different descriptions of the amino acid sequences helps to understand the relationship between the sequences and the structures or functions of proteins. In this paper we summarize several descriptions of amino acid sequence. Taking FOOD function as the discriminant function, some of the descriptions are adopted to predict protein structural classes. By comparing the predictive results it is found that all-aproteins and all-βproteins are sensitive to amino acid composition; however, for the mixed proteins, α + βproteins and α/βproteins, the predictive quality can be improved considerately by taking into account the residue order along the sequences.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2003年第1期1-5,共5页 Computers and Applied Chemistry
基金 国家自然科学基金(90103033)
关键词 氨基酸序列 氨基酸组成 特征描述 结构类预测 亚细胞定位 amino acid sequence amino acid composition characteristic description structural classes prediction subcellular location
  • 相关文献

参考文献19

  • 1Nakashima H, et al. The folding type of a protein is relevant to the amino acid composition. J Biochem, 1986, 99:153- 162.
  • 2Dubchak I, et al. Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci USA, 1995, 92: 8700 -8704.
  • 3Bahar I, et al. Understanding the Recognition of Protein Structural Classes by Amino Acid Composition. Proteins: Struct, Funct, and Genet,1997, 29:172 - 185.
  • 4Chou K C, Zhang C T. Prediction of protein structural classes. Crit Rev Biochem Mol Biol, 1995, 30(4) :275- 349.
  • 5Wang Z X, Yuan Z. How Good Is Prediction of Protein Struc Class by the Component-Coupled Method? Proteins:Struct, Funct, and G enet, 2000,38: 165 - 175.
  • 6Dubchak I, et al. Prediction of Protein Folding Class from Amino Acid Composition. Proteins:Struct, Funct, and Genet, 1993, 16:79-91.
  • 7Metfessel B A, et al. Cross - validation of protein structural class prediction using statistical clustering and neural networks. Protein Sci, 1993,2:1171 - 1182.
  • 8Cai Y D, et al. Using neural networks for prediction of domain structural classes. Biochimica et Biophysica Acta, 2000, 1476:1 -2.
  • 9Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 2001, 17(8) :721 - 728.
  • 10Cai Y D, et al. Prediction of protein structural classes by support vector machines. Computer and Chemistry, 2002, 26:293- 296.

同被引文献54

  • 1于虹,温晶,杨裔,俞建萍,佟双,郭彦,赵光宇,寇志华,周育森.甲型流感病毒H1N1 HA蛋白在果蝇S2细胞中的表达及免疫原性研究[J].中国人兽共患病学报,2012,28(9):875-879. 被引量:3
  • 2吴霞,廖波,王天明.蛋白质序列的六维表示与相似性分析[J].生物技术通讯,2004,15(4):366-368. 被引量:4
  • 3[1]Fujiwara Y,Asogawa M.Prediction of subcellular localization using amino acid composition and order[J].Genome Informatics,2001,12:103-112.
  • 4[2]Nakai K and Kanehisa M.A knowledge base for predicting protein localization sites in eukaryofic cells[J].Genomics,1992,14:897-911.
  • 5[3]Nakashima H and Nishikawa K.Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies[J].J.Mol.Bid.,1994,238:54-61.
  • 6[5]Cedano J,Aloy P,Perez-Pons J.A.and Ouerol E.Relation between amino acid composition and cellular location of proteins[J].J.Mol.Biol,1997,266:594-600.
  • 7[6]Reinhardt A and Hubbard T.Using neural networks for prediction of the subcellular location of proteins[J].Nucleic Acids Res.,1998,26:2230-2236.
  • 8[7]Chou K.C and Elrod D.W.protein subcellular location prediction[J].Protein Eng.,1999,12:107-118.
  • 9[8]Hua S and Sun Z.R.Support vector machine approach for protein subcellular localization prediction[J].Bioinformatics,2001,17:721-728.
  • 10[9]Feng ZP.An overview on predicting the subcellular location of a protein[J].In Silico Biol,2002,2:291-303.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部