期刊文献+

产肌氨酸氧化酶菌株的分离及发酵条件研究 被引量:3

Isolation of Sarcosine Oxidase Producing Bacteria and Study on the Conditions for the Enzyme Production
下载PDF
导出
摘要 在本研究工作中分别从 42℃的恒化富集培养物和 30℃的分批富集培养物中分离到 4株产肌氨酸氧化酶 (SOX)的节杆菌。对所产SOX的特性分析表明 ,从 42℃恒化培养物中分离得到的菌株 42 - 1所产的酶比分批培养法分离得到菌株的酶具有高的热稳定性和低的Km值。对菌株 42 - 1产酶发酵条件的研究表明 ,SOX可以被诱导物如肌氨酸、肌酸、肌酐和氯化胆碱诱导产生。在发酵过程中适当减少通气量对SOX的产生有显著的促进作用。葡萄糖等容易利用的碳源的存在对SOX的合成不产生降解代谢产物抑制作用 ,而尿素的存在则对SOX的生成有强的抑制作用。因而菌株 42 - Four sarcosine oxidase (SOX) producing \%Athrobacter \%spp. were isolated from the batch cultural enrichment at 30℃ and chemostat enrichment at 42℃. Compared with the SOX produced by the strains isolated from batch cultural enrichment, the SOX from strain isolated from chemostat enrichment had the properties of higher thermal stability and lower Km value for substrate. Studying on the conditions for fermentation showed that SOX was an induced enzyme and could be induced by the reagents such as sarcosine, creatine, creatinine and choline chloride. When aeration was reduced suitably, the activity of SOX could be remarkably increased during the process of fermentation. The easily used carbon sources such as glucose had no catabolic repression effect on the SOX production, but urea could repress the production of SOX dramatically. Therefore, the main function of strain 42-1 decomposing creatine was to provide nitrogen source to the cell.
出处 《微生物学报》 CAS CSCD 北大核心 2003年第2期235-240,共6页 Acta Microbiologica Sinica
基金 浙江省科技厅资助项目 (0 0 1 1 1 0 2 3 3 -0 1 )~~
关键词 肌氨酸氧化酶 降解代谢产物抑制 节杆菌 发酵条件 Sarcosine oxidase, Catabolic repression, Arthrobacter
  • 引文网络
  • 相关文献

参考文献8

  • 1[1]Erlenkotter A, Fobker M, Chemnitius C. Biosensors and flow-through system for the determination of creatinine in hemodialysate. Anal Bioanal Chem, 2002, 372(2): 284~292.
  • 2[2]Tombach B, Schneider J, Matzkies F, et al. Amperometric creatinine biosensor for hemodialysis patients. Clin Chim Acta, 2001, 312(1-2): 129~134.
  • 3[3]Okumiya T, Jiao Y, Saibara T, et al. Sensitive enzymatic assay for erythrocyte creatine with production of methylene blue. Clin Chem, 1998, 44(7): 1489~1496.
  • 4[4]Arrizubieta M J. Increased thermal resistance and modification of the catalytic properties of a β-glucosidase by random mutagenesis in vitro recombination. J Biol Chem, 2000, 275(37): 28843~28848.
  • 5[5]Secades P, Guijarro J A. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl Envir Microbiol, 1999, 65: 3969~3975.
  • 6[6]Mahr K, Hillen W, Titgemeyer F. Carbon catabolite repression in Lactobacillus pentosus: Analysis of the ccpA region. Appl Envir Microbiol, 2000, 66: 277~283.
  • 7[7]Calik P, Calik G, Ozdamar T H. Oxygen-transfer strategy and its regulation effects in serine alkaline protease production by Bacillus licheniformis. Biotechnol Bioeng, 2000, 69(3): 301-311.
  • 8[8]San K Y, Bennett G N, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4(2): 182~192

同被引文献24

引证文献3

二级引证文献2

;
使用帮助 返回顶部