期刊文献+

抽油机电动机调压控制系统的神经网络建模 被引量:3

Artificial neural network model for voltage regulator control system in induction motor of sucker rod pump
下载PDF
导出
摘要 根据电动机拖动抽油机运行的特点 ,阐明了采用神经网络方法对该系统建模的必要性。基于带有回归单元的Elman神经网络 ,对拖动抽油机的变载荷三相异步电动机的晶闸管三相调压器系统进行了建模。采用了一种带惯性项的动态反向传播学习算法 ,克服了通常的BP(backpropogation反向传播 )算法振荡和收敛速度慢的弱点 ,使抽油机系统随负载变化时对电动机实现调压控制。对Elman神经网络的结构运用方法 ,以及惯性项的动态反向传播学习算法作了较详细的介绍 ,对由晶闸管三相调压器构成的拖动系统建模所选向量参数进行了说明。实例表明 。 An induction motor for driving a sucker rod pump can be powered by an SCR voltage regulator.The load on the motor is varied all the time.Therefore,the modeling of the above system is quite complicated using traditional modeling methods.But it can be achieved by using a dynamic recurrent Artificial Neural Network (ANN),namely Elman ANN,based on the operation characteristics of the system.A dynamic back_propagation (BP) learning method with an inertia item is applied to ANN training,which has some advantages over the traditional BP method with resonance and slow convergence rate.The trained ANN makes it possible to regulate the voltage cross the motor with the load changes on it.The ANN configuration,the modeling procedure and the dynamic BP learning method were described.The selection methods of the parameters for system modeling were also discussed.The simulation results show that the results of this method have a relative small error that is as good as expected.
出处 《石油学报》 EI CAS CSCD 北大核心 2003年第1期105-107,共3页 Acta Petrolei Sinica
基金 黑龙江省工业指导计划项目 ( 96省工指 62 )
关键词 抽油机 调压器 神经网络 非线性建模 sucker rod pump voltage regulator artificial neural network non_linear modeling
  • 相关文献

参考文献2

共引文献9

同被引文献9

  • 1张允,张宁生,刘茜,宁刚.钻井机械故障诊断数据挖掘系统结构的研究[J].石油学报,2006,27(1):111-113. 被引量:4
  • 2Hernandez M A,Salvatore J S.Real world data is dirty:Data cleaning and the merge/purge problem[J].Data Mining and Knowledge Discovery,1998,2 (1):9-37.
  • 3Lu Hongjun,Setiono Rudy,Liu Huan.Effective data mining using neural network[J].IEEE Transactions on Knowledge and Data Engineering,1996,8 (6):957-961.
  • 4Ayoubi M.Nolinear dynamic systems identification with dynamic neural networks for fault diagnosis in technical processes[C]//Proceedings of the 1994 IEEE international conference on systems,man and cybernetics.Texas,San Antonio,1994:2120-2125.
  • 5OliviaParrRud 朱扬勇 左子叶.数据挖掘实践[M].北京:机械工业出版社,2003..
  • 6(美)OliviaParrRud著,朱扬勇等译.数据挖掘实践[M]. 机械工业出版社, 2003
  • 7Mauricio A. Hernández,Salvatore J. Stolfo.Real-world Data is Dirty: Data Cleansing and The Merge/Purge Problem[J].Data Mining and Knowledge Discovery.1998(1)
  • 8蒋京颐,徐建军,杨欣宇,唐国良,韩荣花.6kV注水电机软起动装置[J].大庆石油学院学报,1999,23(2):36-38. 被引量:7
  • 9杜家兴,徐宗昌,王铁宁,杨学强.装备保障数据仓库与数据挖掘研究[J].计算机工程与应用,2004,40(9):225-227. 被引量:8

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部