期刊文献+

蛋白质-蛋白质对接中打分函数的研究 被引量:2

THE STUDY OF THE SCORING FUNCTION IN PROTEIN-PROTEIN DOCKING
下载PDF
导出
摘要 通过分析蛋白质-蛋白质间的静电、疏水作用和熵效应与相对于晶体结构的蛋白质主链原子的均方根偏差(RMSD)的相关性,定量地考查了它们在蛋白质-蛋白质对接中作为打分函数评价近天然构象的能力。对7个蛋白质复合物体系的分析表明,就水化能而言,原子接触势模型(ACE)优于原子水化参数模型(ASP),且修正的ACE模型具有更好的评价近天然构象的能力;水化能与静电能结合对评价能力有进一步的提高。最后,我们将静电和修正的ACE水化能结合作为打分函数用于36个蛋白质复合物体系的对接研究,进一步证实了这两种能量项的组合能有效地将近天然结构从分子对接模式中区分出来。 Binding free energy potentials, combining molecular mechanics with empirical solvation and entropic terms, are used to discriminate near-native conformations from slightly misdocked protein-protein decoys. It is of interest to determine the contributions of individual binding free energy terms and their combinations to the discriminative power of the potential. This is achieved in terms of quantitative measure of the correlation coefficient between binding free energy and the root mean square deviation (RMSD) of backbone atoms from the native complex structure. From the results, the discrimination improves if the binding free energy expression includes the electrostatic energy and an empirical solvation term, with the structure-based atomic contact potential (ACE) providing much better discrimination than the atomic solvation parameter model (ASP). Moreover, obvious improvement is obtained when using the modified atomic contact potential is used. By scoring test for 36 protein-protein docking cases, the results further indicate that the combination of the electrostatic energy and the modified atomic contact potential (ACE) is of much better discriminative power and can be used to score the putative binding modes in protein-protein docking.
出处 《生物物理学报》 CAS CSCD 北大核心 2003年第1期47-52,共6页 Acta Biophysica Sinica
基金 国家自然科学基金(29992590-2 30170230 10174005) 北京市自然科学基金(5032002)项目
关键词 结合自由能 溶剂化自由能 侧链熵 静电能 Binding free energy Solvation free energy Side-chain entropy Electrostatic energy
  • 相关文献

参考文献20

  • 1Halperin I, Ma B, Wolfson H, et al. Principles of docking:an overview of search algorithms and a guide to scoring functions[J]. Proteins, 2002,47:409~443.
  • 2Jiang F, Kim SH. "Soft docking" : matching of molecular surface cubes[J]. J Mol Biol, 1991,219:79~102.
  • 3Lin SL, Nussinov R, Fischer D, et al. Molecular surface representations by sparse critical points[J]. Proteins, 1994,18:94~101.
  • 4Walls PH, Steinberg MJ. New algorithm to model protein-protein recognition based on surface complementarity.Applications to antibody-antigen docking [J]. J Mol Biol,1992,228:277~297.
  • 5Gabb HA, Jackson RM, Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information[J]. J Mol Biol, 1997,272:106~120.
  • 6Shoichet BK, Kuntz ID. Protein docking and complementarity[J]. J Mol Biol, 1991,221:327~346.
  • 7Camacho C J, Gatchell DW, Kimura SR, et al. Scoring docked conformations generated by rigid-body protein-protein docking[J]. Proteins, 2000,40:525~537.
  • 8Ma XH, Wang CX, Li CH. A fast and valuable empirical approach on protein-protein binding free energy calculation[J]. Protein engineering, 2002,15:677~681.
  • 9Eisenberg D, McLachlan AD. Solvation energy in protein folding and binding[J]. Nature, 1986,319:199~203.
  • 10Ooi T, Oobatake M, Nemethy G, et al. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides[J]. Proc Natl Acad Sci USA, 1987,84:3086~3090.

同被引文献25

  • 1苏敏仪,刘慧思,林海霞,王任小.应用机器学习方法构建药物分子解离速率常数的预测模型[J].物理化学学报,2020,36(1):179-187. 被引量:4
  • 2李春华,马晓慧,陈慰祖,王存新.蛋白质-蛋白质分子对接方法研究进展[J].生物化学与生物物理进展,2006,33(7):616-621. 被引量:11
  • 3Renxiao Wang,Liang Liu,Luhua Lai,Youqi Tang.SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex[J].Journal of Molecular Modeling.1998(12)
  • 4Bruce L. Bush,Robert B. Nachbar.Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA[J].Journal of Computer - Aided Molecular Design.1993(5)
  • 5Marriott J H,Neidle S,Matusiak Z, et al.Chemoenzymatic prepara- tion of the novel antifolate thymidylate synthase inhibitor N-(4-{N-[(6S)-2-methyl-4-oxo-3,4,7,8-tetrahydro-6H-cyclopenta[g] quinazolin-6-yl]-N-(prop-2-ynyl)amino}-benzoyl)-L-glutamic acid and its glutamyl cleavage product[].Journal of the Chemical Society.1999
  • 6Jackman A L,Farrugia D C,Gibson W, et al.ZD1694 (Tomudex): A new thymidylate synthase inhibitor with activity in colorectal cancer[].Eur J Cancer.1995
  • 7Peters G J,Smitskamp-Wilms E,Smid K, et al.Determinants of ac- tivity of the antifolate thymidylate synthase inhibitors tomudex (ZD1694) and GW1843U89 against mono- and multilayered colon cancer cell lines under folate-restricted conditions[].Cancer Res.1999
  • 8Lewis N L,Scher R,Gallo J M, et al.Phase I and pharmacokinetic study of irinotecan in combination with raltitrexed[].Cancer ChemothPharm.2002
  • 9Bavetsias V,Clauss R,Henderson E A.Antifolate chemistry: Syn- thesis of 4-{N-[(6RS)-2-methyl-4-oxo-3,4,7,8-tetrahydro-6H-cyclo- penta[g]quinazolin-6-yl]-N-(prop-2-ynyl)amino}benzoic acid via a (propargyl)Co2(CO)6+ complex[].Org Biomol Chem.2003
  • 10McGuire J J.Anticancer antifolates: Current status and future direc- tions[].Curr Pharm Des.2003

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部