期刊文献+

复映射族z^(-2)+c广义M集的标度性质 被引量:1

Scaling Invariance of General Mandelbrot Set of f(z,c)=z^(-2)+c
下载PDF
导出
摘要 在复映射 f(z,c) =z-2 +c的广义Mandelbrot集中 ,发现了主周期芽苞的标度规律·用符号动力学中的方法对其做了研究 ,给出了主周期芽苞字的规律 ,及字相应的提升方程 ,通过解字提升方程 ,给出了任意精确常数 μ的算法 ,通过大量的计算机计算得到了一个常数 μ =1 ·标度常数为 1的情况在复映射的标度常数研究中为首次发现·提出了常数 In a general Mandelbrot set of complex mapping f(z,c)=z -2+c, a scaling constant μ was found. This constant was obtained by using the method of symbolic dynamics. The super-attracted points of the main periodic-buds were obtained by solving the word-lifting equations. The technique to solve the equations was introduced in detail. This scaling factor gives a better understanding of the Mandelbrot set of the complex maping z -2+c. The analogous phenomenon was also found at the boundary of other periodic buds. Using this method other scaling factor at the double-period bifurcation buds along the direction of real axis can be gotten. The scaling constant μ can be found at all tangential points of two buds. The scaling constant of double-period bifurcation could be a constant at any buds.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第4期334-337,共4页 Journal of Northeastern University(Natural Science)
基金 国家教育部博士学科点专项科研基金资助项目 (2 0 0 0 0 14 5 12 )
关键词 复映射 广义M集 符号动力学 分岔 标度 周期窗口 字提升法 general Mandelbrot set symbolic dynamics bifurcation scaling period window word-lifting equation
  • 相关文献

参考文献8

  • 1Feigenbaum M J. Universality in nonlinear system[M]. Los Alamos Science, 1980.14-27.
  • 2Feigenbaum M J. Quantitative Universality for a class of nonlinear transfomation[J]. J Statistics Phys, 1978,19(6):25-52.
  • 3Mandelbrot B B. The fractal geometry of nature[M]. San Fransisco: Freeman WH, 1982.1-10.
  • 4Gujar U G, Bhavsar V C. Fractals from z←za+c in the complex c-plane[J]. Computers & Graphics, 1991,15(3):441-449.
  • 5Chen N, Zhu W Y.Bud-sequences conjecture on M fractal image and M-J conjecture between c and z planes from z←z-w+c(w=a+bi)[J]. Computers & Graphics, 1998,22(4):537-546.
  • 6Yan D J, Liu X D, Zhu W Y. A study of Mandelbrot and Julia sets generated from a general complex cubic iteration[J]. Fractals, 1999,7(4):433-437.
  • 7朱志良,曹林,朱伟勇,曾文曲.M-J混沌分形图谱的标度不变性[J].东北大学学报(自然科学版),2002,23(4):307-310. 被引量:4
  • 8Liu X D,Zhu W Y. Composed accelerated escape time algorithm to construct the general Mandelbrot sets[J]. Fractal, 2001,9(2):149-153.

二级参考文献1

共引文献3

同被引文献10

  • 1Falconer K J. Fractal geometry-mathematical foundation and applications[M]. London: John Wiley and Son, 1990.320-329.
  • 2Peitgen H O, Saupe D. The science of fractal images[M]. Berlin: Springer-Verlag, 1988.137-218.
  • 3Nicol R, Smith P, Raggatt P R. The use of the simplex method for the optimization of non-linear functions on a laboratory microcomputer[J]. Comput Biol Med, 1986,16(2):145-152.
  • 4Kuipers J. Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality[M]. reprint edition. Princeton: Princeton University Press, 2002.201-258.
  • 5Gsponer A, Pierre J. The physical heritage of Sir W. R. Hamilton[EB/OL]. http:∥arxiv.org/PS-cache/math-ph/pdf/0201/0201058, 2002-11-28.
  • 6Gujar U G, Bhavsar V C. Fractals from z←zα+c in the complex c-plane[J]. Computers & Graphics, 1991,15(3):441-449.
  • 7Chen N, Zhu W Y. Bud-sequence conjecture on M fractal image and M-J conjecture between c and z planes from z←zw+c(w=α+iβ)[J]. Comput & Graphics, 1998,22(4):537-546.
  • 8Dixon, Stephen L, Kevin L, et al. Generation and graphical analysis of Mandelbrot and Julia sets in more than four dimensions[J]. Computers & Graphics, 1996,20(3):451-456.
  • 9Terry W G. Artist's statement CQUATSF a non-distributive quad algebra for 3D renderings of Mandelbrot and Julia sets[J]. Computers & Graphics, 2002,26(2):367-370.
  • 10Hart J C, Kauffman L H, Sandin D J. Interractive visualization of quaternion Julia sets[A]. Proceediongs of the 1st Conference on Visualization '90 [C]. San Francisco: IEEE Computer Society Press, 1990.1-10.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部