摘要
在复映射 f(z,c) =z-2 +c的广义Mandelbrot集中 ,发现了主周期芽苞的标度规律·用符号动力学中的方法对其做了研究 ,给出了主周期芽苞字的规律 ,及字相应的提升方程 ,通过解字提升方程 ,给出了任意精确常数 μ的算法 ,通过大量的计算机计算得到了一个常数 μ =1 ·标度常数为 1的情况在复映射的标度常数研究中为首次发现·提出了常数
In a general Mandelbrot set of complex mapping f(z,c)=z -2+c, a scaling constant μ was found. This constant was obtained by using the method of symbolic dynamics. The super-attracted points of the main periodic-buds were obtained by solving the word-lifting equations. The technique to solve the equations was introduced in detail. This scaling factor gives a better understanding of the Mandelbrot set of the complex maping z -2+c. The analogous phenomenon was also found at the boundary of other periodic buds. Using this method other scaling factor at the double-period bifurcation buds along the direction of real axis can be gotten. The scaling constant μ can be found at all tangential points of two buds. The scaling constant of double-period bifurcation could be a constant at any buds.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2003年第4期334-337,共4页
Journal of Northeastern University(Natural Science)
基金
国家教育部博士学科点专项科研基金资助项目 (2 0 0 0 0 14 5 12 )
关键词
复映射
广义M集
符号动力学
分岔
标度
周期窗口
字提升法
general Mandelbrot set
symbolic dynamics
bifurcation
scaling
period window
word-lifting equation