期刊文献+

基于内容图像检索的特征子空间抽取 被引量:5

Feature Subspaces Extraction for Content-Based Image Retrieval
下载PDF
导出
摘要 作为一种有效的解决手段,相关反馈(relevance feedback)技术在基于内容图像检索(content based image retrieval)的研究中得到了深入的发展.尽管有效,已有的反馈算法却始终没有解决特征空间的有指导降维和特征中的噪声去除这两个问题.提出了一种新的方法,通过对用户在检索过程中提供的正反馈样本在各特征空间中的分布特性,利用主成分分析(principal component analysis)来消除特征中的噪声,实现了对特征空间进行有效的降维.试验结果显示,该方法在不牺牲检索精度的前提下提高了检索速度,降低了存储复杂度. Relevance feedback (RF) is used as an effective solution for content-based image retrieval (CBIR). Although it is effective, the RF-CBIR framework does not address the issue of feature extraction for dimension reduction and noise reduction. In this paper, a novel method is proposed for extracting features for the class of images represented by the positive images provided by subjective RF. Principal component analysis (PCA) is used to reduce both noise contained in the original image features and dimensionality of feature spaces. The method increases the retrieval speed and reduces the memory significantly without sacrificing the retrieval accuracy.
出处 《软件学报》 EI CSCD 北大核心 2003年第2期190-193,共4页 Journal of Software
基金 国家自然科学基金 国家重点基础研究发展规划(973)~~
关键词 内容图像检索 特征子空间抽取 图像数据库 图像反馈算法 主成分分析 Feature extraction Feedback Image reconstruction
  • 相关文献

参考文献5

  • 1[1]Cox IJ, Minka TP, Papathomas TV, Yianilos PN. The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Transactions on Image Processing, 2000,9(1):20~37.
  • 2[2]Diamantaras I, Kung, SY. Principal Component Neural Networks, Theory and Applications. New York: John Wiley & Sons, Inc., 1996.
  • 3[3]Rui Y, Huang TS. A novel relevance feedback technique in image retrieval. In: Proceedings of the 7th ACM International Conference (Part 2) on Multimedia (Part 2). Orlando: ACM Press, 1999. 67~70.
  • 4[4]Su Z, Li S, Zhang H. Extraction of feature subspaces for content-based retrieval using relevance feedback. In: Proceedings of the 9th ACM Multimedia Conference. Orlando: ACM Press, 2001. 98~106.
  • 5[5]Vasconcelos N, Lippman A. Learning from user feedback in image retrieval systems. In: Proceedings of the NIPS'99. 1999. http://www.media.mit.edu/people/nuno/publications.html.

同被引文献20

  • 1董卫军,周明全,耿国华,黎晓.基于内容的图像检索技术研究[J].计算机工程,2005,31(10):162-163. 被引量:23
  • 2[4]Jing Huang. Color- spatial image indexing and applications[D]. New York: Cornell University, 1998.
  • 3Hong D H,Kim C.A Note on Similarity Measures Between Vague Sets and Between Elements[J].Information Sciences,1999,135:83-96.
  • 4Li Deng-feng,Cheng Chun-tian.New Similarity Measures of Intui-tionistic Fuzzy Sets and Application to Pattern Recognition[J].Pattern Recognition Letters,2002,23:221-225.
  • 5V N Gudivada,V V Raghavan.Content Based Image Retrieval Systems[J].IEEE Computer,1995,28(9):18-22.
  • 6Zadeh L A.The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[J].Information Sciences,1975,8(3):199-249.
  • 7Zadeh L A.Fuzzy Sets[J].Information and Control,1965,8(3):338-353.
  • 8Gau W L,Buehrer D J.Vague Sets[J].IEEE Transactions on Systems,Man,and Cybernetics,1993,23(2):610-614.
  • 9Bustince H,Burillo P.Vague Sets are Intuitionistic Fuzzy Sets[J].Fuzzy Sets and Systems,1996,79:403-405.
  • 10Chen S M.Measures of Similarity Between Vague Sets and Between Elements[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,1997,27(1):153-158.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部