期刊文献+

一种新的结构特征全参考图像质量评价方法

A Novel Structural Feature Similarity Index for Full Reference Image Quality Assessment
下载PDF
导出
摘要 提出一种基于单演信号理论提取结构特征的全参考图像质量评价方法。方法首先利用单演信号理论将图像分解为幅值、方向和相位3个特征分量,构造单演相位一致映射图和特征分量相似度比较函数;然后对相位一致映射图进行Riesz变换,其变换后的一阶、二阶系数作为结构特征相似度比较函数,最后将单演信号的特征分量和结构特征相似度比较函数归一化加权计算得出最终的图像质量评价值。实验结果表明,由于单演相位一致具有较好的抗噪声能力,特征分量和结构特征相似度更加全面考虑到对于人眼感知图像结构的重要性,因此评价结果与图像主观质量评价具有较好的一致性。 A novel feature similarity( RMFSIM) index for full reference IQA based on monogenic signal theory is proposed. First,image is decomposed into three orthogonal components of local amplitude,local phase and local orientation using monogenic signal theory. Comparison functions which are similarity functions of monogenic phase congruency map and feature components are constructed. Then,the coefficients maps of the 1st-order and the 2ndorder Riesz transforms of monogenic phase congruency map act as structure similarity comparison function. Finally,the final image quality evaluation is obtained by calculating and normalizing comparison functions weighted. Experimental results demonstrate that since the importance of structure magnitude and orientation for the human eyes is more comprehensive consideration the proposed similarity index is highly consistent with human subjective evaluations and achieves good performance in terms of prediction monotonicity and accuracy.
作者 丛波
出处 《科学技术与工程》 北大核心 2014年第25期102-106,共5页 Science Technology and Engineering
基金 辽宁省教育厅科学研究项目(W2012196)资助
关键词 全参考图像质量评价 单演相位一致 结构特征相似度 人眼视觉系统 image quality assessment(IQA) monogenic phase congruency(MPC) human visual system feature similarity index
  • 相关文献

参考文献1

二级参考文献12

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2WANG ZHOU, WU GUIXING, SHEIKH H R, et al. Quality-aware images[J].IEEE Transactions on Image Processing, 2006, 15(6):1680-1689.
  • 3WANG ZHOU, BOVIK A C, LU LIGANG. Why is image quality assessment so difficult?[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2002,4, 3313-3316.
  • 4NILL N B, BOUZAS B H. Objective image quality measure derived from digital image power spectra[J].IEEE Signal Processing Letters, 2002,9(3): 388-392.
  • 5WANG ZHOU, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004,13(4): 600-612.
  • 6MORRONE M C, ROSS J, BURR D C, et al. Mach bands are phase dependent[J].Nature, 1986, 324(6049): 250-253.
  • 7MORRONE M C, OWENS R A. Feature detection from local energy[J].Pattern Recognition Letters, 1987, 6(5): 303-313.
  • 8KOVESI P. Image features from phase congruency[J].Journal of Computer Vision Research, 1999, 1(3): 1-26.
  • 9Laboratory for Image and Video Engineering. et al. Image and video quality assessment at LIVE[EB/OL]. [2011-11-19]. http://live.ece.utexas.edu/research/quality.
  • 10杨春玲,何流,魏毅,麦智毅.基于图像块分类的加权结构相似度[J].华南理工大学学报(自然科学版),2009,37(1):42-47. 被引量:3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部