期刊文献+

基于类Haar特征和自适应提升算法的前车识别 被引量:4

Front Vehicle Identification Based on Haar-like Feature and Adaptive Boosting Algorithm
下载PDF
导出
摘要 针对汽车高级驾驶辅助系统(ADAS)中前方车辆识别率低的问题,基于机器视觉原理研究了前方道路图像中的类Haar特征;并进行积分图计算。在提取类Haar特征基础上,采用自适应提升(Ada Boost)算法进行正负样本训练并级联,得到训练好的模型;进而检测和识别汽车行驶中前方车辆。最后基于Open CV计算机视觉库在Visual Studio开发环境中进行了算法实现和测试。结果表明,每帧视频图像识别时间小于40 ms,检测率准确可靠,满足多场景、多工况下的前方车辆实时识别。 Aiming at the low rate of front vehicle recognition in the advanced driver assistance system( ADAS),the haar-like features in the road ahead image are studied based on the principle of machine vision,and the integral graph calculation is performed,the adaptive boosting( AdaBoost) algorithm is used to train the positive and negative samples and cascade to obtain the trained model on the basis of extracting the haar-like features,then detect and identify the vehicle in front of the vehicle. Finally,the algorithm is implemented and tested in the visual studio development environment based on open source computer vision library. The results show that the recognition time of each frame of video image is less than 40 milliseconds,the detection rate is accurate and reliable,and it can meet the real-time identification of front ve hicle in multiple scenes and multiple working conditions.
作者 曹景胜 李刚 石晶 王冬霞 郭银景 CAO Jing-sheng;LI Gang;SHI Jing;WANG Dong-xia;GUO Yin-jing(College of Automobile and Traffic Engineering,Liaoning University of Technology,Jinzhou 121001,China;Collaborative Innovation Center for Key Technologies of Automotive and Parts,Liaoning University of Technology,Jinzhou 121001,China;College of Electronics and Information Engineering,Liaoning University of Technology,Jinzhou 121001,China;College of Electronic,Communication and Physics,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《科学技术与工程》 北大核心 2019年第7期161-165,共5页 Science Technology and Engineering
基金 国家自然科学基金(51675257) 国家自然科学基金青年基金(51305190) 辽宁省自然基金面上项目(20180550020) 辽宁省教育厅重大科技平台项目(JP2016014 JP2016004)资助
关键词 高级驾驶辅助系统 前车识别 机器视觉 类HAAR特征 自适应提升算法 advanced driver assistance system front vehicle identification machine vision Haar-like feature adaptive boosting algorithm
  • 相关文献

参考文献11

二级参考文献111

共引文献64

同被引文献40

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部