摘要
呼吸暂停是一种常见的疾病,严重的呼吸暂停会导致患者猝死。针对患者需要对睡眠过程中呼吸信号进行实时监测,提出了一种基于短时能量的呼吸暂停信号识别监测方法。该方法基于患者呼吸过程的信号频域特性,对不同的患者进行自适应鼾声特征信号建模;之后通过神经网络信号识别方法,利用建立的模型对患者的呼吸信号进行呼吸暂停判断。实验结果表明,对不同的患者进行睡眠呼吸过程监测时,可以识别95%的呼吸暂停信号。研究为呼吸暂停患者的实时监测提供了一种高精度的信号识别方法。
Apnea is a common condition in which severe apnea can cause sudden death.Aiming at the need of patients to monitor the respiratory signal during sleep,a method based on short-term energy for apnea signal recognition and monitoring is proposed.The method is based on the frequency domain characteristics of the patient’s respiratory process,and the adaptive chirp characteristic signal is firstly modeled for different patients.The neural network signal recognition method is used to make an apnea judgment on the patient’s respiratory signal based on the established model.The experimental results show that monitoring the sleep and breathing process of different patients can identify 95%of the apnea signal.This method provides a high-precision signal recognition method for real-time monitoring of apnea patients.The experimental results show that monitoring the sleep and breathing process of different patients can identify 95%of the apnea signal.This method provides a high-precision signal recognition method for real-time monitoring of apnea patients.
作者
牛泽
韩焱
李凯
钟贤硕
敬博通
NIU Ze;HAN Yan;LI Kai;ZHONG Xian-shuo;JING Bo-tong(Shanxi Provincial Key Laboratory of Information Detection and Processing,North University of China,Taiyuan 030051,China)
出处
《科学技术与工程》
北大核心
2019年第8期132-137,共6页
Science Technology and Engineering
关键词
呼吸暂停
短时能量
频域特性
信号建模
神经网络
apnea
short-term energy
frequency domain characteristics
signal modeling
neural networks