期刊文献+

基于Bregman联合聚类与加权矩阵分解的融合推荐算法 被引量:2

A Fusion Recommendation Algorithm Based on Bregman Co-clustering and Weighted Matrix Approximation
下载PDF
导出
摘要 针对当前大数据背景下推荐系统中所存在推荐效率低下、扩展性差、推荐质量不高等问题,提出一种基于Bregman联合聚类与加权矩阵分解的融合推荐算法(CO-CWMA)。首先,通过Bregman联合聚类挖掘出多样、不同层次的低秩评分子矩阵,组合不同约束与距离的聚类结果训练得到子模型,进而在各个模型的子矩阵上并发地进行矩阵分解,最后将各个子模型进行均值融合,提高推荐质量、效率与扩展性。在矩阵分解阶段采用SVD++算法,基于每个子矩阵中的评分分布计算加权策略,给予高频评分较大权值,在梯度下降阶段利用学习率函数控制学习率的更新。实验结果表明,与三种基线算法相比,该算法在均方根误差(RMSE)与平均绝对误差(MAE)上均有明显降低,即推荐质量有较大提升。 Aiming at the problems of low recommendation efficiency,recommendation quality and poor expansibility in the recommendation system,a fusion recommendation algorithm based on Bregman co-clustering and weighted matrix approximation(CO-CWMA)was proposed.Firstly,the Bregman co-clustering was used to mine the low-rank sub-matrices of different levels,clustering results of different constraints and distances were combined to train the sub-models,then the matrix approximation was performed concurrently on the sub-matrices of each model.Finally,each sub-model performed mean fusion to improve recommendation quality,efficiency and scalability.SVD++algorithm was used in the matrix approximation stage,weighting strategy was calculated based on the score distribution,and high-frequency score got a larger weight.Learning rate function was used to control the learning rate during the gradient descent phase.Experimental results show that the proposed algorithm has a significant reduction in root mean square error(RMSE)and mean absolute error(MAE)compared with the three baseline algorithms,that is,recommended quality is greatly improved.
作者 郭蕊 孙福振 王绍卿 张进 王帅 方春 GUO Rui;SUN Fu-zhen;WANG Shao-qing;ZHANG Jin;WANG Shuai;FANG Chun(School of Computer Science and Technology,Shandong University of Technology,Zibo 255049,China)
出处 《科学技术与工程》 北大核心 2019年第8期176-181,共6页 Science Technology and Engineering
基金 国家自然科学基金(61841602) 山东省自然科学基金(ZR2018PF005) 山东省高等学校优秀骨干教师国际合作培养项目资助
关键词 联合聚类 矩阵分解 学习率函数 SVD++ 加权策略 均值融合 co-clustering matrix approximation learning rate function SVD++ weighting strategy fusion average
  • 相关文献

参考文献7

二级参考文献58

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3张志政,邢汉承.一种基于实例推理的概念学习方法[J].计算机工程与应用,2006,42(10):87-90. 被引量:2
  • 4Jeong B, Lee J, Cho H. Improving memory-based collaborative filtering via similarity updating and prediction modulation[ J]. Information Sciences,2010,180(5 ) :602-612.
  • 5Zhao Changwei, Peng Qinke, Liu Che. An improved structural equivalence weighted similarity for recommender systems[ Jl. Procedia Engineering ,2011,15 : 1869-1873.
  • 6Vozalis M G, Margaritis K G. Using SVD and demographic da- ta for the enhancement of generalized collaborative filtering [ J ]. Information Sciences ,2007,177 ( 15 ) :3017-3037.
  • 7Chen Gang, Wang Fei, Zhang C S. Collaborative filtering using orthogonal nonnegative matrix tri-factorization [ J ]. Information Processing and Management ,2009,45 ( 3 ) :368-379.
  • 8周子亮.结合非负矩阵分解的推荐算法及框架研究[D].北京:北京交通大学,2013.
  • 9Tsi C F, Hung C. Cluster ensembles in collaborative filtering recommendation [ J ]. Applied Soft Computing, 2012,12 ( 4 ) : 1417-1425.
  • 10yon Luxburg U. A tutorial on spectral clustering[ J ]. Statistics and Computing,2007,17(4) :395-416.

共引文献57

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部