期刊文献+

若尔盖泥炭地地下水位和土壤温度对二氧化碳排放的影响 被引量:13

Effect on CO_2 Emissions of Water Tables and Soil Temperatures in Zoigê Peatlands
原文传递
导出
摘要 利用中型实验生态系,对若尔盖典型泥炭地二氧化碳排放通量开展地下水位控制实验。通过比较不同地下水位条件下泥炭地生长季(5~10月)二氧化碳排放通量的日变化和月变化,探讨若尔盖泥炭地地下水位和土壤温度对二氧化碳排放的影响。结果显示,5~7月中水位(控制水位为地表以下10 cm)下的二氧化碳排放通量最高,其次是低水位(控制水位为地表以下20 cm)下的排放通量,高水位(控制水位为地表0 cm)下的排放通量最低;8月各水位下二氧化碳排放通量差异不明显;9~10月的二氧化碳排放通量随水位降低而增加;整个生长季,水位由低到高的二氧化碳排放通量平均值分别为404.65 mg/(m2·h)、438.76 mg/(m2·h)和359.18 mg/(m2·h);二氧化碳排放通量随土壤温度变化而变化,其中,中水位条件下二氧化碳排放通量对温度变化最为敏感,其次是低水位下,高水位下相对最不敏感。暖干化的气候变化趋势将导致若尔盖典型泥炭地释放更多的二氧化碳到大气中。 A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. We quantified the relationship between water table positions and CO2 emissions by manipulating water table from mesocosms during the plant growth period(from May to October, 2012) in Zoigêpeatland. Daily and monthly CO2 emissions were measured and three water tables were considered 0 cm depth, 10 cm depth and 20 cm depth(presented below as W0, W10 and W20, respectively). Results showed that,from May to July, mean CO2 emissions were lowest at the highest water tables(W0), followed by those under W20 and W10. No significant difference was observed in August. While in September and October, mean CO2 emissions were highest at the lowest water tables(W20), followed by those under W10 and W0. During the growth period, mean CO2 emission fluxes under W20, W10 and W0were 404.65 mg/(m2·h), 438.76 mg/(m2·h) and359.18 mg/(m2·h), respectively. There was a positive correlation between CO2 emissions and soil temperature,which was most significant under W10 while under W0 was of the least significance. The results suggested that the warming and drying of the climate would result in additional CO2 emissions from Zoigê peatland.
出处 《湿地科学》 CSCD 北大核心 2015年第3期332-337,共6页 Wetland Science
基金 国家自然科学基金项目(41103041)资助
关键词 泥炭地 二氧化碳排放通量 地下水位 中型实验生态系 若尔盖 peatland carbon dioxide emissions water table mesocosm Zoigê
  • 相关文献

参考文献20

  • 1Jisong Yang,Jingshuang Liu,Xiaojun Hu,Xinxin Li,Yan Wang,Huiying Li.Effect of water table level on CO 2 , CH 4 and N 2 O emissions in a freshwater marsh of Northeast China[J]. Soil Biology and Biochemistry . 2013
  • 2Lorraine Wilson,Jared Wilson,Joseph Holden,Ian Johnstone,Alona Armstrong,Michael Morris.Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss[J]. Science of the Total Environment . 2011 (11)
  • 3S.M.L. Hardie,M.H. Garnett,A.E. Fallick,N.J. Ostle,A.P. Rowland.Bomb- 14 C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon[J]. Geoderma . 2009 (3)
  • 4Kerry J. Dinsmore,Ute M. Skiba,Michael F. Billett,Robert M. Rees.Effect of water table on greenhouse gas emissions from peatland mesocosms[J]. Plant and Soil . 2009 (1)
  • 5Jiquan Chen,Scott Bridgham,Jason Keller,John Pastor,Asko Noormets,Jake F.Weltzin.Temperature Responses to Infrared-Loading and Water Table Manipulations in Peatland Mesocosms[J].Journal of Integrative Plant Biology,2008,50(11):1484-1496. 被引量:2
  • 6HERMANN F.JUNGKUNST,SABINEFIEDLER.Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change[J]. Global Change Biology . 2007 (12)
  • 7Rodney A. Chimner,David J. Cooper.Influence of water table levels on CO 2 emissions in a Colorado subalpine fen: an in situ microcosm study[J]. Soil Biology and Biochemistry . 2003 (3)
  • 8Jake F.Weltzin,Scott D.Bridgham,JohnPastor,JiquanChen,CalvinHarth.Potential effects of warming and drying on peatland plant community composition[J]. Global Change Biology . 2003 (2)
  • 9I. A.Janssens,H.Lankreijer,G.Matteucci,A. S.Kowalski,N.Buchmann,D.Epron,K.Pilegaard,W.Kutsch,B.Longdoz,T.Grünwald,L.Montagnani,S.Dore,C.Rebmann,E. J.Moors,A.Grelle,ü.Rannik,K.Morgenstern,S.Oltchev,R.Clement,J.Guemundsson,S.Minerbi,P.Berbigier,A.Ibrom,J.Moncrieff,M.Aubinet,C.Bernhofer,N. O.Jensen,T.Vesala,A.Granier,E. ‐D.Schulze,A.Lindroth,A. J.Dolman,P. G.Jarvis,R.Ceulemans,R.Valentini.Productivity overshadows temperature in determining soil and ecosystem respiration across European forests[J].Global Change Biology.2002(3)
  • 10Miko U.F. Kirschbaum.Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry . 2000 (1)

二级参考文献29

  • 1Bridgham SD, Johnston CA, Pastor J, Updegraff K (1995). Potential feedbacks of northern wetlands on climate change. Bioscience 45, 262-274.
  • 2Bridgham SD, Megonlgal JP, Keller JK, Bliss NB, Trettin C (2006). The carbon balance of North American wetlands. Wetlands 26, 889- 916.
  • 3Bridgham SD, Pastor J, Updegraff K, Malterer T J, Johnson K, Harth C et al. (1999). Ecosystem control over temperature and heat flux will modulate climate change effects on northern peatlands. Ecol. Appl. 9, 1345-1358.
  • 4Chen J, Saunders SD, Crow T, Brosofske KD, Mroz G, Naiman R et al. (1999), Microclimatic in forest ecosystems and landscapes. Bioscience 49, 288-297
  • 5Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems 3, 308-319.
  • 6Gorham E (1991). Northern peatlands - role in the carbon-cycle and probable responses to climatic warming. Ecol. Appl. 1,182-195.
  • 7Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001). Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135- 150.
  • 8Guo Y, Schuepp PH (1994). On surface energy balance over the northern wetlands 1. The effects of small-scale temperature and wetness heterogeneity. J. Geophys. Res. 99, 1601-1612.
  • 9Harte J, Shaw R (1995). Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267, 876-879.
  • 10Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R et al, (1995). Global warming and soil microclimate: results from a meadow-warming experiment. Ecol. Appl. 5, 132-150.

共引文献36

同被引文献236

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部