期刊文献+

科学数据资源的质量控制和评估 被引量:9

The Quality Control and Quality Assessment for Scientific Data Resources
原文传递
导出
摘要 在简单介绍中科院科学数据资源质量状况和质量控制、评估和认证等国际研究和应用现状的基础上,文章详细介绍了针对科学数据资源的特点和质量控制需求而发展的科学数据质量框架体系和质量成熟度模型。质量框架体系为用户自主在框架体系下实现数据质量的控制、评估、改善和提高确定了方向和内容,具有高度的灵活适用性;而质量成熟度模型则为用户从数据生产、管理的角度提供了数据质量保证和评估方向。 Based on the brief introduction of the present quality situation on Scientific Data resources,and the research progress and its application of quality control and assessment at home and abroad,this paper proposes a Scientific Data Quality Framework and Data Quality Management Maturity Model.The Scientific Data Quality Framework helps user to realize data control,data assessment,and quality improvement with their self- determination.Data Quality Management Maturity Model help users to improve data quality from the production and management flow.
作者 胡良霖
出处 《科研信息化技术与应用》 2009年第1期50-55,共6页 E-science Technology & Application
关键词 科学数据 质量控制 质量评估 质量框架体系 成熟度模型 Scientific data Quality control Quality assessment Data quality framework Data quality management maturity model
  • 相关文献

参考文献2

二级参考文献57

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献312

同被引文献75

引证文献9

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部