期刊文献+

集群资源管理及回填技术

Cluster Resource Maragement and Backfiuing
原文传递
导出
摘要 随着互联网的高速发展和大数据的广泛运用,无论是科学计算还是社会工业,都越来越依赖于强大的计算能力,对服务器性能的要求也越来越高。计算机集群系统具有处理速度快、可靠性高,可扩展性好等诸多优点,成为了服务器的主流。而集群资源的合理分配和高效的作业调度算法在提高系统整体资源利用率,作业吞吐量和程序性能等方面发挥着重要作用。基于现有的资源管理模型和应用需求,本文研究和分析了集群资源组织管理方法,作业调度关键技术,并对目前主要的三种回填策略对提高集群资源利用率方面的运用进行了阐述和对比。 With the rapid development of the Internet and the widespread use of big data,both sci-entific computing and social industry are increasingly relying on powerful computing power,and the requirements for server performance are getting higher and higher.The computer cluster system has the advantages of fast processing speed,high reliability,and good scalabil-ity,and has become the mainstream of the server.The rational allocation of cluster resources and efficient job scheduling algorithms play an important role in improving overall system resource utilization,job throughput and program performance.Based on the existing resource management model and application requirements,this paper studies and analyzes the cluster resource organization management mode,the key tech-nology of job scheduling,and expounds and compares the current three backfilling strategies to improve the utilization of cluster resources.
作者 林起勋 钱德沛 栾钟治 Lin Qixun;Qian Depei;Luan Zhongzhi(Beijing university,Beijing 100191,China)
出处 《科研信息化技术与应用》 2018年第4期15-26,共12页 E-science Technology & Application
关键词 分布式系统 资源管理 任务调度 回填算法 distributed system resource management task scheduling backfilling
  • 相关文献

参考文献1

二级参考文献4

  • 1Shreedhar M,Varghese G.Efficient fair queueing using deficit round-robin[].IEEE ACM Transactions on Networking.1996
  • 2.Apache Mesos[]..
  • 3.Apache Hadoop[]..
  • 4.YARN[]..

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部