期刊文献+

基于核映射极限学习机的入口氮氧化物预测 被引量:2

Prediction of inlet NO_x based on extreme learning machine of kernel mapping
原文传递
导出
摘要 针对在线贯序极限学习机(OS-ELM)算法隐含层输出不稳定、易产生奇异矩阵和在线贯序更新时没有考虑训练样本时效性的问题,提出一种基于核函数映射的正则化自适应遗忘因子(FFOS-RKELM)算法.该算法利用核函数代替隐含层,能够产生稳定的输出结果.在初始阶段加入正则化方法,通过构造非奇异矩阵提高模型的泛化能力;在贯序更新阶段,通过新到的数据自动更新遗忘因子.将FFOS-RKELM算法应用到混沌时间序列预测和入口氮氧化物时间序列预测中,相比于OS-ELM、FFOS-RELM、OS-RKELM算法,可有效地提高预测精度和泛化能力. To solve the problem that the hidden layer output of an online sequential extreme learning machine(OS-ELM)algorithm is not stable, the singular matrix is easy to produce, and the OS-ELM has no consideration about the training sample timeliness during the sequential updating process, an improved OS-ELM algorithm online sequential extreme learning machine based on adaptive forgetting factor of kernel function mapping(FFOS-RKELM) is presented based on the regularization and adaptive forgetting factor of kernel function mapping. In the FFOS-RKELM algorithm, the kernel function replaces the hidden layer to produce the stable output results. In the initialization phase, the regularization method can improve the generalization ability of the model by constructing a nonsingular matrix. During the sequential updating phase, the forgetting factor can be adjusted automatically according to new data. The FFOS-RKELM algorithm is applied to the prediction of the chaotic time series and the time series of Inlet NOx. Compared with the OS-ELM algoyithm, the FFOS-RELM algorithm and the OS-RKELM algorithm, the proposed algorithm can improve the prediction accuracy and generalization ability more effectively.
作者 金秀章 张少康 JIN Xiu-zhang;ZHANG Shao-kang(School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第1期213-218,共6页 Control and Decision
关键词 极限学习机 核函数 遗忘因子 正则化 时间序列 入口氮氧化物 extreme learning machine kernel function forgetting factor regularization time series inlet nitrogen oxides
  • 相关文献

参考文献3

二级参考文献33

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2李军,刘君华.一种新型广义RBF神经网络在混沌时间序列预测中的研究[J].物理学报,2005,54(10):4569-4577. 被引量:32
  • 3Maguire L P,Roche B,McGinnity T M,et al.Predicting a chaotic time series using a fuzzy neural network[J].Information Sciences,1998,112(1):125-136.
  • 4Van den Bergh F,Engelbrecht A P.Training product unit network using cooperative particle swarm optimizers[C].Proc of the 3th Genetic and Evolutionary Computation Conf.Washington,2001:126-132.
  • 5Chng E S,Chen S,Mulgrew B.Gradient radial basis function networks for nonlinear and nonstationary time series prediction[J].IEEE Trans on Neural Networks,1996,7(1):190-194.
  • 6Park J Y,Irwin W Sandberg.Approximation and radialbasis-function networks march[J].Neural Computation,1993,5(2):305-316.
  • 7Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc of IEEE Int Conf on Neural Network.Piscataway:IEEE Press,1995:1942-1948.
  • 8Shi Y,Eberhart R C.A modified particle swarm optimizer[C].1998 IEEE Int Conf on Evolutionary Computation.Anchorage,1998:69-73.
  • 9Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C].Proc of 2000 Congress Evolutionary Computation.Piscataway,2000:84-88.
  • 10Mackey M C,Glass L.Oscillation and chaos in physiological control systems[J].Science,1977,(2):287-289.

共引文献64

同被引文献26

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部