摘要
以区间模糊偏好关系(IVFPR)和直觉模糊偏好关系(IFPR)的理论框架为依据,将勾股模糊数(PFN)引入偏好关系中,定义勾股模糊偏好关系(PFPR)和加性一致性PFPR.然后,提出标准化勾股模糊权重向量(PFWV)的概念,并给出构造加性一致性PFPR的转换公式.为获取任意给定的PFPR的权重向量,建立以给定的PFPR与构造的加性一致性PFPR偏差最小为目标的优化模型.针对多个勾股模糊偏好关系的集结,利用能够有效处理极端值并满足关于序关系单调的勾股模糊加权二次(PFWQ)算子作为集结工具.进一步,联合PFWQ算子和目标优化模型提出一种群体决策方法.最后,通过案例分析表明所提出方法的实用性和可行性.
Based on the theoretical framework of interval-valued fuzzy preference relation(IVFPR) and intuitionistic fuzzy preference relation(IFPR), the Pythagorean fuzzy number(PFN) is introduced into the preference relation, and the concepts of Pythagorean fuzzy preference relation(PFPR) and additive consistent PFPR are proposed. Then, the definition of normalized Pythagorean fuzzy weight vector(PFWV) is proposed, and a conversion formula is provided to convert this PFWV into the additive consistent PFPR. For any given PFPR, a goal programming model is developed to obtain its Pythagorean fuzzy weights by minimizing its deviation from the constructed additive consistent PFPR. Because the Pythagorean fuzzy weighted quadratic(PFWQ) operator can effectively deal with extremes and satisfy the monotonicity with respect to the order relation, it is used for the aggregation of multiple PFPRs. A group decision making approach is proposed by using the PFWQ operator and the goal programming model, and a practice example is given to illustrate the practicability and feasibility of the proposed approach.
作者
杨艺
钱桂生
丁恒
李延来
吕红霞
YANG Yi;QIAN Gui-sheng;DING Heng;LI Yan-lai;LYU Hong-xia(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China;Institute of Big Data and Internet Innovation,Hu’nan University of Commerce,Changsha 410205,China;Department of Systems Engineering and Engineering Management,City University of Hong Kong,Hong Kong 999077,China)
出处
《控制与决策》
EI
CSCD
北大核心
2019年第2期287-297,共11页
Control and Decision
基金
国家自然科学基金项目(71373222
71371156)
湖南省重点实验室开放研究基金项目(2017TP1026)
关键词
勾股模糊偏好关系
目标优化模型
勾股模糊加权二次算子
群体决策
Pythagorean fuzzy preference relation
goal programming model
Pythagorean fuzzy weighted quadratic operator
group decision making