期刊文献+

考虑执行器性能约束的刚体航天器鲁棒姿态跟踪控制 被引量:6

Robust attitude tracking control of rigid spacecraft considering control input constraints
原文传递
导出
摘要 针对存在模型不确定性、外界干扰力矩和执行器性能受限等约束条件下的刚体航天器姿态跟踪控制问题进行研究,并基于滑模控制、反步控制、自适应控制、辅助系统和动态面控制等方法设计相应的鲁棒姿态跟踪控制算法.利用自适应控制实现了对具有多项式形式上界函数的系统未知不确定性进行在线估计和补偿;通过建立描述执行器动态特性的低通滤波模型,并结合辅助系统方法,以确保执行器输出控制力矩的幅值及其变化率均满足一定的饱和约束;通过引入动态面控制法,避免期望虚拟控制信号的一阶导数项直接出现在控制器中,简化了闭环姿态跟踪控制器的设计形式.最后,通过数值仿真验证了所提出控制算法的有效性和可行性. The rigid spacecraft attitude tracking control problem in the presence of the modeling uncertainty, external disturbance and input constraints is investigated in this paper, and a robust attitude tracking control algorithm is designed based on the combination of the sliding mode control, backstepping control, adaptive control, auxiliary system and dynamic surface control approaches. Within the proposed controller, the adaptive control technique is utilized to estimate and compensate for the unknown system uncertainty on line. A dynamic model in a low pass filter form is built up for the onboard actuators, which is then associated with the auxiliary system method to satisfy the control input magnitude and rate saturations. Moreover, the dynamic surface control(DSC) method is employed to avoid the calculation of the di?erentiation of the virtual control signal and simplify the closed-loop attitude tracking controller. Finally, digital simulations are conducted to further demonstrate the e?ectiveness and feasibility of the proposed controller.
作者 陈海涛 宋申民 CHEN Hai-tao;SONG Shen-min(Center for Control Theory and Guidance Technology,Harbin Institute of Technology,Harbin 150001,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第4期735-742,共8页 Control and Decision
基金 国家自然科学基金项目(61174037 61333003 61021002)
关键词 滑模控制 反步控制 自适应控制 辅助系统 动态面控制 幅值及变化率饱和 sliding mode control backstepping control adaptive control auxiliary system dynamic surface control magnitude and rate saturations
  • 相关文献

参考文献2

二级参考文献23

  • 1Bouabdallah S. Design and control of quadrotors withapplication to autonomous flying[J]. Ecole PolytechniqueFederale de Lausanne, 2007,3727: 61.
  • 2Bouabdallah S, Siegwart R. Backstepping andsliding-mode techniques applied to an indoor microquadrotor[C]. Int Conf on Robotics and Automation.Barcelona: IEEE, 2005: 2247-2252.
  • 3Bristeau P-J,Callou F, Vissire D. The navigation andcontrol technology inside the ar. drone micro uav[C]. The18th IFAC World Congress. Milano, 2011: 1477-1484.
  • 4Lim H, Park J, Lee D. Build your own quadrotor: Open-source projects on unmanned aerial vehicles[J]. Robotics&Automation Magazine, 2012,19(3): 33-45.
  • 5Zhou Q L,Zhang Y, Rabbath C. Design of feedbacklinearization control and reconfigurable control allocationwith application to a quadrotor UAV[C]. 2010 Conf onControl and Fault-Tolerant Systems. Nice: IEEE, 2010:371-376.
  • 6Lee D, Kim H J, Sastry S. Feedback linearization vs.adaptive sliding mode control for a quadrotor helicopter[J].Int J of Control, Automation and Systems, 2009,7(3): 419-428.
  • 7Al-Younes Y M, Al-Jarrah M A, Jhemi A A. Linear vs.nonlinear control techniques for a quadrotor vehicle [C].The 7th Int Symposium on Mechatronics and ItsApplications. Sharjah: IEEE, 2010: 1-10.
  • 8Zheng E, Xiong J. Quad-rotor unmanned helicopter controlvia novel robust terminal sliding mode controller andunder-actuated system sliding mode controller[J]. Optik:Int J for Light and Electron Optics, 2014,125(11): 2817-2825.
  • 9Zheng E H, Xiong J J,Luo J L. Second order sliding modecontrol for a quadrotor UAV[J]. ISA Trans, 2014, 53(4):1-7.
  • 10Xu R,Ozguner U. Sliding mode control of a quadrotorhelicopter[C]. 45th IEEE Conf on Decision and Control.San Diego: IEEE, 2006: 4957-4962.

共引文献33

同被引文献52

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部