期刊文献+

融合改进蚁狮算法和T-S模糊模型的噪声非线性系统辨识 被引量:17

Identification of nonlinear system with noise based on improved ant lion optimization and T-S fuzzy model
原文传递
导出
摘要 针对传统的T-S模糊辨识方法难以准确辨识含噪声的非线性系统问题,将噪声信号和系统的其他输入变量一起作为模糊前件的输入,采用具有动态随机搜索和寻优半径连续收缩机制的改进蚁狮算法优化模糊前件的结构参数,使用加权最小二乘法实现模糊后件的参数辨识.数值仿真表明,所提出的辨识方法可以有效抑制噪声的影响,经过改进蚁狮算法优化后的T-S模糊模型辨识效果更好.最后,将所提出方法用于直拉硅单晶生长热模型的辨识,实验结果表明该方法优于传统的辨识方法. For the identification of nonlinear systems with noise, the traditional T-S fuzzy identification method is difficult to get better results. Therefore the noise signal is regarded as the input of the antecedent together with other input variables of the system. The improved ant lion optimization(ALO) algorithm with dynamic random search and continuous radius contraction is used to optimize the structural parameters of the antecedent. The weighted least square method is utilized to identify the parameters in the consequent. The simulation results show that the proposed method can effectively repress the noise, and achieve better identification effect by using the improved ALO algorithm. Finally, the proposed method is applied to the identification of the thermal model of CZ silicon single crystal growth, and the experimental results show that it is superior to the traditional identification method.
作者 赵小国 刘丁 景坤雷 ZHAO Xiao-guo;LIU Ding;JING Kun-lei(National&Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration,Xi’an University of Technology,Xi’an 710048,China;Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing,Xi’an University of Technology,Xi’an 710048,China;School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第4期759-766,共8页 Control and Decision
基金 国家自然科学基金重点项目(61533014) 国家科技重大专项基金项目(2009ZX02011001) 陕西省教育厅专项科研计划项目(17JK0456)
关键词 蚁狮算法 T-S模糊模型 噪声 非线性系统 直拉硅单晶 ant lion optimization T-S fuzzy model noise nonlinear system CZ silicon single crystal
  • 相关文献

参考文献8

二级参考文献82

  • 1杜海峰,庄健,张进华,王孙安.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. 被引量:25
  • 2Huiping YU,Yunkan SUI,Jing WANG,Fengyi ZHANG,Xiaolin DAI.Optimal Control of Oxygen Concentration in a Magnetic Czochralski Crystal Growth by Response Surface Methodology[J].Journal of Materials Science & Technology,2006,22(2):173-178. 被引量:1
  • 3涂瑾,吴胜登,曹建伟,李世伦.基于CCD测量技术的不完整圆直径测量算法研究[J].半导体技术,2007,32(7):574-576. 被引量:7
  • 4Clarke D W, Mohtadi C, Tufts P S. Generalized predictive control[J]. Automatica, 1987, 23(2): 137-160.
  • 5Nevistic V, Morari M. Constrained control of feedback linearizable systems[C]. Proc of the European Control Conf. Rome: IEEE Press, 1995: 1726-1731.
  • 6Li W C, Biegler L T. Multistep, Newton-type control strategies for constrained, nonlinear processes[J]. Chemical Engineering Research & Design, 1989, 67(3): 562-577.
  • 7Liu B, Shen Q, Su H Y. A nonlinear predictive control algorithm based on fuzzy on-line modeling and discrete optimization[C]. Proc of the IEEE Int Conf on Systems, Man and Cybernetics. Washington DC, 2003:816-822.
  • 8Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear process using genetic algorithms[J]. Fuzzy Sets and Systems, 2003, 139(1): 59-80.
  • 9Yuzgec Ugur, Becerikli Yasar, Turker Mustafa. Nonlinear predictive control of a drying process using genetic algorithms[J]. ISA Trans, 2006, 45(4): 589-602.
  • 10Polyak B T. Stabilizing chaos with predictive control[J]. Automation and Remote Control, 2005, 66(11): 1791- 1804.

共引文献63

同被引文献147

引证文献17

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部