期刊文献+

用于图像分割的局部区域一致性流形约束MRF模型 被引量:3

Local region consistency manifold constrained MRF model for image segmentation
原文传递
导出
摘要 针对区域马尔可夫随机场(MRF)模型难以有效描述图像复杂先验知识的问题,提出一种基于局部区域一致性流形约束MRF(LRCMC-MRF)模型.首先,所提模型利用高维数据的低维流形分布表征图像局部区域的复杂几何结构先验,建立图像局部区域的流形先验约束;其次,基于Pairwise MRF模型,建立一种包含更多图像局部信息的局部空间自适应MRF模型;最后,基于贝叶斯理论,将复杂局部区域几何结构先验和局部空间自适应统计特征融合,利用Gibbs采样算法对所提出模型进行优化.实验结果表明,与基于常规区域的MRF模型相比,所提出的分割算法具有较好的分割效果. Region-based Markov random fields(MRF)is usually difficult to effectively describe the prior knowledge of complex natural images.To solve this problem,a local region consistency manifold constrained MRF(RCMC-MRF)model is proposed.Firstly,the proposed model uses low-dimensional manifold distribution of high-dimensional data to characterize complex geometry structure prior in local region of images,and builds a localized manifold prior constraints term for the image segmentation model.Then,the proposed model utilizes more local region information of images to construct a local spatial adaptive MRF based on the pairwise MRF.Finally,the complex geometry structure prior and local spatial adaptive statistical feature in the local region are incorporated according to the Bayesian theory.The Gibbs sample algorithm is used for optimization.Compared with the conventional region-based MRF model,experimental result shows that the proposed model can provide a better segmentation result.
作者 徐胜军 孟月波 刘光辉 于军琪 熊福力 胡高珍 XU Sheng-jun;MENG Yue-bo;LIU Guang-hui;YU Jun-qi;XIONG Fu-li;HU Gao-zhen(School of Information&Control Engineering,Xi’an University of Architecture&Technology,Xi’an 710055,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第5期997-1003,共7页 Control and Decision
基金 国家重点研发计划项目(2017YFC0704100) 国家自然科学基金项目(61473216) 陕西省自然科学基金项目(2015JM6276 2015JM6337) 陕西省教育厅专项项目(14JK1429 18JK0477) 西安建筑科技大学基础基金项目(JC1415)
关键词 流形学习 马尔可夫随机场 局部区域一致性 Gibbs采样算法 图像分割 manifold learning Markov random fields local region consistency Gibbs sample algorithm image segmentation
  • 相关文献

参考文献4

二级参考文献152

  • 1Roth S, Black M. Fields of experts: A framework forlearning image priors [C]. IEEE Conf on Computer Visionand Pattern Recognition. New York: IEEE Press, 2005, 2:860-867.
  • 2Weiss Y, Freeman W T. What makes a good model ofnatural images?[C]. IEEE Conf on Computer Vision andPattern Recognition. New York: IEEE Press, 2007: 1-8.
  • 3Tanaka M,Okutomi M. Locally adaptive learning fortranslation-variant MRF image priors[C]. IEEE Conf onComputer Vision and Pattern Recognition. New York:IEEE Press, 2008: 1-7.
  • 4Potetz B,Lee T S. Efficient belief propagation for higher-order cliques using linear constraint nodes [J]. ComputerVision and Image Understanding, 2008, 112(1): 39-54.
  • 5Tappen M F,Liu C, Adelson E H, et al. Learning Gaussianconditional random fields for low-level vision[C]. IEEEConf on Computer Vision and Pattern Recognition. NewYork: IEEE Press, 2007: 1-8.
  • 6Li S Z. MRF modeling in computer vision[M]. New York:Springer-Verlag,1995: 133-134.
  • 7Wang Lei, Liu Jun, Stan Z L. MRF parameter estimationby MCMC method[J]. Pattern Recognition, 2000, 33(11):1919-1925.
  • 8Geman D. Bayesian image analysis by adaptiveanneaiing[C], Proc of Int Geoscience and Remote SensingSymposium. Amherst: Springer-Verlag, 1985: 269-277.
  • 9Szeliski R, Zabih R, Scharstein D, et al. A comparativestudy of energy minimization methods for Markov randomfields with smoothness-based priors[J]. IEEE Trans onPattern Analysis and Machine Intelligence, 2008, 30(6):1068-1080.
  • 10Verbeek J J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation, 2003, 15(2): 469-485.

共引文献62

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部