期刊文献+

小波能量评价EEG的不同成分对癫痫发作预报的价值 被引量:3

THE ROLES OF DIFFERENT COMPONENTS OF EEGS FOR SEIZURE PREDICTION -WAVELET ENERGY EVALUATION
下载PDF
导出
摘要 癫痫是一种严重危害人类健康的常见疾病,对癫痫发作进行预报具有重要的临床意义。通过对3例部分性继发全身性发作的癫痫病人在发作前最长约30min的8导EEG进行小波分解,将EEG中的棘波、尖波成分与慢波成分分别突出到不同的尺度上,并计算相应尺度上这些成分的能量,考察这些不同成分在发作前的变化趋势。发现在发作前的若干分钟,8导EEG的慢波能量都有显著增大,而与棘波/尖波有关的快波能量基本上没有什么变化趋势,说明EEG慢波成分的增大对部分性继发全身性发作的预报具有重要价值,EEG的“慢波过大”可能是癫痫从发作间状态转变为发作的重要因素。 Epilepsy, a chronic disorder of the nervous system affecting 1% of the population, is characterized by the abnormal synchronized firing of a large number of neurons. Alerting a patient and/or his attending staff to an impending epileptic seizure has obvious clinical importance. A lot of attempts at epileptic prediction have been made, some based on sharp-transient detection and some tracked changes in background activity. Wavelet transform was applied to 8 channel scalp EEGs recording from 3 epileptic patients of partial seizures secondarily generalized seizures. The data were sampled a couple of minutes or tens of minutes prior to the seizure onset. For each record and channel, the data was decomposed at 7 scales. Spike/sharp and slow wave components of EEGs can be highlighted at different scales. Energy of the spike/sharp and slow wave components was calculated from detail signal at different scales, respectively. Result: The energy of slow waves increased among 8 channels ahead of seizure onset several minutes hi all the 3 patients, but the energy of spike/sharp components had no trends. Conclusion: Slow wave components of EEGs are well suited for seizure prediction in partial type secondarily generalized seizures. High-amplitude slow waves of EEGs may be an important factor for seizure transition.
出处 《生物物理学报》 CAS CSCD 北大核心 2003年第1期73-78,共6页 Acta Biophysica Sinica
关键词 癫痫 发作 预报 EEG 小波变换 Epilepsy Seizure Prediction EEG Wavelet transform
  • 相关文献

参考文献13

  • 1McKeown MJ, McNamara JO. When do epileptic seizures really begin[J]? Neuron, 2001,30:1~9.
  • 2Litt B, Echauz J. Prediction of epileptic seizures[J]. Lancet Neurology, 2002,1:22~30.
  • 3Lehnertz K. Seizure anticipation techniques: state of the art and future requirements[A]. In: Building new bridges at the frontiers of engineering and medicine-23rd annual international conference of the IEEE Engineering in medicine and biology society[C]. Istanbul Turkey: Dort Renk Ltd. Sti., 2001.
  • 4Le Van Quyen M, Martinerie J, Navarro V, et al. Anticipation of epileptic seizures from standard EEG recordings[J].Lancet, 2001,357:183~188.
  • 5Rogowski Z, Gath I, Bental E. On the prediction of epileptic seizures[J]. Biol Cybern, 1981,42,9~15.
  • 6Lehnertz K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy - an overview[J].International Journal of Psychophysiology, 1999,34:45~52.
  • 7Litt B, Esteller R, Echauz J, et al. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients[J]. Neuron, 2001,30:51~64.
  • 8Theiler J, Rapp PE. Re-examination of the evidence for row-dimensional nonlinear structure in the human electroencephalogram[J]. Electroenceph Clin Neurophysiol, 1996,98:213~222.
  • 9Zhu JL, Shen Q, Jiang DZ. Bursting of neurons under slow wave stimulation[A]. In: Building new bridges at the frontiers of engineering and medicine-23rd annual international conference of the IEEE engineering in medicine and biology society[C]. Istanbul Turkey: Dort Renk Ltd Sti, 2001.
  • 10Smith G, Cox C, Sherman S, et al. A firing-rate model of spike-frequency adaptation in sinusoidally-driven thalamocortical relay neurons[J]. Thalamus & Related Systems, 2001,1:135~156.

同被引文献45

  • 1马颖颖,张泾周,吴疆.脑电信号处理方法[J].北京生物医学工程,2007,26(1):99-102. 被引量:12
  • 2刘旋,高小榕,张国君,高上凯.量化脑电分析方法及其在癫痫易发作期检测中的应用[J].北京生物医学工程,2007,26(3):274-279. 被引量:1
  • 3刘晓欲,蒋大宗,黄远桂.癫痫脑电图自动检测技术的发展[J].国外医学(生物医学工程分册),1997,20(1):1-5. 被引量:4
  • 4沈鼎烈.临床癫痫学[M].上海:上海科学技术出版社,1995.178.
  • 5Litt B, Echauz J. Prediction of epileptic seizures[J]. Lancet Neurology, 2002, 1: 22-30.
  • 6Litt B, Esteller R, Echauz J, et al. Epileptic seizures may begin hours in advance of clinical onset: A report of five patients[J]. Neuron, 2001,30(1): 51-64.
  • 7Braga NIO, Manzano GM, NoAbrega JAM. Quantitative analysis of EEG background activity in patients with rolandic spikes[J]. Clin Neurophysiol, 2000, 111: 1643-1645.
  • 8Wang J, Wieser HG. Regional "Regidity" of background EEG activity in epi leptogenic zone [J]. Epilepsia, 1994, 35: 495-499.
  • 9Kalayci T, Ozdamar O. Wavelet preprocessing for automated neuralnetwork detection of spikes[J]. IEEE Eng Med Biol Mag, 1995, 14:160-166.
  • 10Geva AB, Kerem DH. Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering[J]. IEEE Trans BME, 1998, 45: 1205-1216.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部