期刊文献+

直链聚合物的结构性质关系的人工神经网络建模 被引量:9

Structure-property relationship modeling for linear chain polymers by artificial neu- ral networks
原文传递
导出
摘要 应用人工神经网络构造了2个直链聚合物的结构性质关系模型。一个是直链聚合物的基团均值法描述的结构参数与其12种性质间定量关系的模型(模型1A);一个是直链聚合物的连接性指数描述的结构参数与其12种性质间定量关系的模型(模型2A)。讨论了2个模型的参数设置,而2个模型绘出的聚合物的12种性质的拟合误差(拟合值与实验值间的标准偏差)分别是:V(298K)为18.9(模型1A)/40.5(模型2A)cc/mole,E_(coh)为8.019/11.122 KJ/mole,δ为0.74/2.17(J/cc)^(0.5) ,F_d为228/235 J^(0.5)cm^(1.5)/mole,T_g为27/52 K,P_s为25/37(cc/mole)(dyn/cm)^(1/4),n为0.0140/0.5191,ζ为7.45/5.36 10^(-6)cc/mole,U_R为727/593 cm^(10/3)/(sec^(1/3)mole),U_H为568/674 cm^(10/3)/(sec^(1/3)mole),H_(μsum)为649/719 gJ^(1/3)/mole^(4/3),Y_(d,1/2)为10.6/10.5 K*kg/mole。结果表明,所建立的模型可用于直链聚合物性质的预测,而人工神经网络确实是聚合物结构性质关系研究中的一个有利的数学工具。 Two structure-property relationship models were made by artificial neural networks for linear chain polymers. Model 1A quantified the relationships between the 12 properties and the descriptors which were given by the group average method, and Model 2A quantified the relationships between the 12 properties and the descriptors which were given by connectivity indexes method. Standard deviations between the fitted value and the experimental value of two models were: 18.9 (model 1A) / 40.5 (model 2A)cc/mole for V (298K) , 8.019/11.122 KJ/ mole for E doh 0.74/2.17 (J/cc)0.5 for S , 228/235 J0.5cm1.5/mole for F d 27/52 K for Tg , 25/37 (cc/mole)(dyn/cm)1/'4 for P. , 0. 0140/0.5191 for n , 7.45/5.36 10-6cc/mole for ζ , 727/593 cm10/3/(sec1/3mole) for UR , 568/674 cm10/3/(sec'/3mole) for Uu , 649/ 719 gj'/3/mole4/3 for H sum 10.6/10.5 K* kg/mole for Kd,1/2. The results indicate that the models could be used to predict the properties of linear chain polymers, and ANNs is one of a useful tool for the polymer QSPR study.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2003年第1期210-216,共7页 Computers and Applied Chemistry
关键词 直链聚合物 结构性质关系 人工神经网络 基团匀值法 连接性指数 linear chain polymers structure-property relationship artificial neural networks group average method connectivity index
  • 相关文献

参考文献17

  • 1van Krevelen D W. Properties of Polymers. New York:Elsevie, 1976.
  • 2van Krevelen D W. Properties of Polymers. 3rd ed. NewYork:Elsevier,1990.
  • 3Bicerano J. Prediction of Polymer Properties. New York:MarcelDekker,1993.
  • 4Bicerano J. Prediction of the properties of polymers from theirstructure. J M S-Rev Macromol Chem Phys, 1996, C36(1):161-196.
  • 5Sumpter B G, Noid D W. Neural networks and graph theory ascomputational tools for predicting polymer properties. Macromol Theory Simul,1994, 3:363-378.
  • 6Sumpter B G, Noid D W. Comp Polym Sci, 1995, 5:121-134.
  • 7Sumpter B G, Noid D W. On the use of computational neural networks forthe prediction of polymer properties. J of Thermal Analysis, 1996,46:833-851.
  • 8Ulmer Ⅱ C W, Smith D A, Sumpter B G, Noid D W. Computationalneural networks and the rational design of polymeric materials: the next generation polycarbonates. Comp and Theor Polymer Science, 1998, 8(3/4) :311-321.
  • 9Brandrup J. Polymer Handbook. 3rd ed. New York:Wiley, 1989.
  • 10Sun H, Tang Y, Wu G. Influences of the input on ANN and QSPR ofhomopolymers. Macromolecular Research, 2002, 10( 1 ): 13-17.

同被引文献61

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部