摘要
由于地质历史上构造应力场的演变 ,多期断层擦痕数据的存在是应力反演所面临的普遍性问题。以往提出处理多期断层擦痕的应力反演算法都基于硬划分 ,忽视了数据自身的不确定性 ,并且一些只是传统的、处理一期断层擦痕的算法的简单延拓。在Fry (1999)的sigma空间里 ,同期断层擦痕向量具有统一的线性分布趋势 ,多期断层擦痕向量具有不同的线性分布趋势。在此基础上 ,本文提出利用模糊线性聚类法来识别多期断层擦痕向量的线性结构。这种算法不仅可以弥补以往算法的上述缺陷 ,还具有自动、直接、有效 。
The presence of polyphase fault/slip data caused by the variability of tectonic stress fields in the geological history is a ge neral problem in stress inversion. Algorithms previously presented for separation of polyphase fault/slip data sets are based on hard subdivision and underestimate the intrinsic nondeterminacy of data. In some of these algorithms, the classic algorithm for one phase fault/slip data is embedded. In Fry's (1999) sigma space, the vectors of one phase fault/slip data must have a linear tendency whe reas the vectors of polyphase data have multiple linear tendencies. The authors herein apply modern fuzzy clustering analysis to detec ting the linear structures of fault/slip data. The algorithm used here considers the nondeterminacy of data and hence can overcome the shortcomings of existing algorithms. It is automatic, direct and effective,and needs less running time.
出处
《地球学报》
EI
CAS
CSCD
北大核心
2003年第2期181-186,共6页
Acta Geoscientica Sinica
基金
中国科学院资源环境领域知识创新工程重要方向项目 (KZCX2 113)
山东省自然科学基金 (Y98E0 80 78)