期刊文献+

自适应滤波算法的神经网络实现 被引量:5

The Realization of Adaptive Filtering Based On Neural Networks
下载PDF
导出
摘要 为了提高传统自适应滤波器求解权值的速度,本文在Hopfield神经网络的基础上,提出了自适应滤波算法的神经网络硬件实现,从理论上进行了分析,并进行了仿真。 On the basis of the Hopfield neural networks,this paper presents the adaptive algorithm through neural networks in order to raise the speed of conventional adaptive filter The paper also analyses its theory and the hardware realization,meanwhile,the simulation is also given
作者 张鹏 王金城
出处 《计算技术与自动化》 2003年第1期21-23,共3页 Computing Technology and Automation
关键词 自适应滤波算法 神经网络 自适应滤波器 能量函数 neural networks adaptive filtering LMS algorithm with variable step
  • 引文网络
  • 相关文献

参考文献2

二级参考文献1

共引文献280

同被引文献49

  • 1祝宇鸿.一种改进的数字图像中值滤波算法[J].吉林大学学报(信息科学版),2001,19(2):23-27. 被引量:19
  • 2陆俭伟,吕干霖,黎宗潼,杨松章.管材超声探伤中缺陷模糊模式识别方法研究[J].声学学报,1996,21(1):20-28. 被引量:7
  • 3Corts C, Vapnik V. Support Vector Networks[J]. Machine Learning. 1995, 20: 273- 297.
  • 4VAPNIC V. An Overview of Statistical Learning Theory[J].IEEEE Transaction on Neural Networks. 1999, 10(5): 988-999.
  • 5Scholkopf B, Sung K- K, Burges C et al. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE Trans. on Signal Processing,1997, 45(11): 2758-2765.
  • 6Seungkoo Lee, George Vachtsevanos. An Application of Rough Set Theory to Defect Detection of Automotive glass[J]. Mathematics and Computers in Simulation, 2002, 60(3 - 5): 225 - 231.
  • 7Stanker, Rosenfeld. Hierarchical Representation of Waveform[J]. IEEE Trans on PAMI, 1998(1): 73 - 82.
  • 8K. Hwang, S. Mandayam, S.S. Udpa, et al. Characterization of Gas Pipeline Inspection Signals Using Wavelet Basis Function Neural Networks[ J]. NDT&E Intern Ational,2000,33(8):531-545.
  • 9Liu Z, Tsukada K, Hanasaki K. One- dimensional Eddy Current Mufti- Frequency Data Fusion: a Multi- resolution Analysis Approach[J]. INSIGHT, 1998, 40(4): 286-289.
  • 10Mina M, Udpa SS, Udpa I, et al. A New Approach for Practical Two Dimensional Data Fusion Utilizing a Single Eddy Current probe[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1997, 16: 749-754.

引证文献5

二级引证文献22

;
使用帮助 返回顶部