期刊文献+

一般Lur’e混沌系统指数同步的M-矩阵方法 被引量:2

An M-Matrix Approach to Exponential Synchronization of General Lur'e Chaotic Systems
下载PDF
导出
摘要 由于许多混沌系统是Lure系统,因此近年来开始对基于Lure混沌系统的同步问题的研究。采用M-矩阵方法和Lyapunov函数方法以及时滞反馈控制技术研究了一般Lure混沌系统的指数同步问题,得到了易于检验的指数同步的代数判据,而且对其Lyapunov指数进行了估计。由此可设计出这种混沌同步方案的反馈控制器。最后,给出了例子加以说明。 Many chaotic systems are Lur抏 systems. Recently,researchers have started to study the chaos synchronization based on Lur抏 chaotic systems. This paper studies exponential synchronization problem for the general Lur抏 chaotic systems based on the M-matrix approach,Lyapunov function method and feedback control technique. Some fairly simple exponential synchronization algebraic criteria are established for verification,facilitating the design of such controllers for synchronization scheme and the estimation of the Lyapunov exponent. Finally,some examples are given to illustrate the applications of the proposed approach.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2003年第3期326-329,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60274007) 国家教育部博士点基金项目(20010487005)资助课题
关键词 Lur'e混沌系统 时滞 指数同步 M-矩阵 全局指数稳定 LYAPUNOV指数 混沌同步 General Lur抏 chaotic system Time delay Exponential synchronization M-matrix Global exponential stability Lyapunov exponent
  • 相关文献

同被引文献9

  • 1Wu C W, Yang T, Chua L O. On Adaptive Synchronization and Control of Nonlinear Dynamical Systems[J]. Int. J. Bifurc. Chaos, 1996,6(3) :455 - 471.
  • 2Grassi G, Mascolo S. Nonlinear Observer Design to Synchronize Hyperchaotic Systems visa Scalar Signal[J]. IEEE Trans. on CAS-I: Fundamental Theory and Applications, 1997,44(10) : 1011 - 1014.
  • 3Liu X Z. Impulsive Stabilization and Control of Chaotic Systems[J]. Nonlinear Analysis, 2001,47(2) : 1081 - 1092.
  • 4Liao X X. Absolute Stability of Nonlinear Control Systems [ M]. China: Kluwer Academic Pub, China Science Press, 1993.
  • 5Liu X Z. Impulsive stabilization and control of chaotic system[J].{H}Nonlinear Analysis TMA,2001.1081-1092.
  • 6Wu C W,Yang T,Chua L O. On adaptive synchronization and control of nonlinear dynamical systems[J].{H}International Journal of Bifurcation and Chaos,1996.455-471.
  • 7Fang J Q,Hong Y. Switching manifold approach to chaos synchronization systems[J].{H}Physical Review E,1999,(03):2523-2526.
  • 8Liao X X. Absolute of Nonlinear Control Systems[M].China:Kluwer Academic Pub,China Science Press,1993.
  • 9廖晓昕.动力系统的稳定性理论和应用[M]{H}北京:国防工业出版社,20001-100.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部