摘要
当正交小波基ψm,n=2-m/2ψ(2-mx-n),m,n∈Z的整平移出现扰动而变为λn(λn-n<1)时,该小波基可构成L2(R)空间的Riesz基ψm,λm=2-m/2ψ(2-mx-λn).这种小波基称为非调和小波基.对具有时频局部化的函数f(x),可用这种小波逼近,从而推广了Dauberchies相应的结果.
Wavelets are functions generated by translating and dilating a function or a finite number of functions. In thi spaper, we consider that the orthonormal basis (ψm,n)m,n∈Z for L2(R) is replaced by the nonharmonic wavelet basis ψm,λn=2-m/2 ψ(2-m x-λn), m,n∈Z,λn-n≤1 such that f∈L2(R) has nonharmonic wavelet expression f(x)=∑m,n cm,n ψm,λn. (ψm,λn)m,n∈Z is used to approximate function f which is 'essentially localized' in timefrequency. The result in Dauberchies is developed.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2003年第2期271-276,共6页
Journal of Xidian University
基金
国家部委预研基金资助项目(W000T45)
关键词
非调和小波
时频局部化
基逼近
小波基
函数
nonharmonic wavelet basis
time-frequency localization
essentially localized