摘要
研究了分圆类和r-循环矩阵(r>0)之间的关系,给出了分圆类、高斯周期和r-循环矩阵之间的一个对应;用一系列特殊的r-循环矩阵Hk解释了高斯周期,它们两者具有很多相似的性质,如乘积的线性性质等.此外还研究了Hk的周期多项式以及它们的逆对称问题,发现所有Hk具有相同的特征多项式,相同的特征值,且不赖于r和k的选取;找到了Hk满足逆对称性质的充分必要条件.这些都是非常有意义的结果.
This paper, makes a research on relations between the cyclotomic classes, Gaussian periods and rcirculant matrices, and create a correspondence between Gaussian periods and rcirculant matrices. It paraphrases Gaussian periods with a series of special rcirculant matrices Hk, and shows that they have some similar properties, such as the linear property of multiplication etc. Furthermore, It researches Gaussian periods polynomials of Hk and their inverse symmetry property and obtains that all Hk have the same characteristics and the same eigenvalues which are independent of the choice of k amd r; and find the sufficient and necessary condition of Hk's having the inverse symmetry property. All these results are all meaningful.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第1期6-9,共4页
Journal of Central China Normal University:Natural Sciences
基金
国家重点基础研究发展规划资助项目.