期刊文献+

一类二阶中立型微分差分方程周期解的存在性(英文) 被引量:7

Existence of Periodic Solutions to a Class of Second-order Neutral Differential Difference Equations
下载PDF
导出
摘要 考虑如下二阶中立型微分差分方程的边值问题 :x(t-τ) - x(t-τ) + f (t,x(t) ,x(t-τ) ,x(t- 2τ) ) =0x(0 ) =x(2 kτ) ,x(0 ) =x(2 kτ)其中 k是任意给定的正整数 ,τ为正实数 .利用含有偏差变元的变分结构及临界点理论 ,作者给出了判定上述方程存在非平凡周期解的判定准则 . by means of variational structure and critical P Oint theory, we give some criteria for the existence of periodic solutions to a Class of second-order neutral differential difference equations as the followin G type(t-τ)-x(t-τ)+f(t,x(t),x(t-τ),x(t-2τ))=0With the boundary value conditionX(0)=x(2kτ), (0)=(2kτ)Where k is a given positive integer and τ is a positive number.=
出处 《应用泛函分析学报》 CSCD 2003年第1期13-19,共7页 Acta Analysis Functionalis Applicata
基金 Supported by Foundation of Zhongshan University Advanced Research Centre(0 2 M9)
关键词 边值问题 变分结构 临界点理论 中立型微分差分方程 周期解 存在性 neutral differential difference equation periodic solutions variational structure
  • 相关文献

参考文献10

  • 1[1]Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 2[2]Hale J K, Lunel S M V. Introduction to Functional Differential Equations[M]. Springer-Verlag, New York, 1993.
  • 3[3]Kaplan J L, Yorke J A. Ordinary differential equations which yield periodic solution of delay equations[J]. J Math Anal Appl, 1974,48:314-324.
  • 4[4]Nussbaum R D. Periodic solutions of some nonlinear autonomous functional differential equations[J]. J Diff Eqns, 1973, 14: 360-394.
  • 5[5]LI Ji-bin, HE xue-zhong. Multiple periodic solutions of differential delay equations created by asymptotically Hamiltonian systems[J]. Nonl Anal T M A, 1998, 31(1/2):45-54.
  • 6[6]GUO Zhi-ming, XU Yuan-tong, LIN Zhuang-peng. A new Zp index theory and its applications[A]. Peter W. Bates, Kening Lu & Daoyi Xu Proceedings of the International Conference on Differential Equations and Computational Simulations[C]. World Scientific Pub Co, Singapore, 2000. 111-114.
  • 7[7]XU Yuan-tong, GUO Zhi-ming. Applications of a Zp index theory to periodic solutions for a class of functional differential equations[J]. J Math Anal Appl, 2001, 257(1): 189-205.
  • 8[8]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Func Anal, 1973,14:349-381.
  • 9[9]Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[A]. CBMS Reg Conf Series in Math[C], Amer Math Soc, 1986, 65: 7-18.
  • 10[10]Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. Springer-Verlag, New York, 1989.

同被引文献24

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部