摘要
本文利用一般域上的λ-矩阵理论,研究了矩阵多项式方程的可解性,证明了完全域上矩阵多项式方程有解的充要条件。这些条件同时提供了解此类矩阵方程的方法。
In this paper, we study the solvability of matrix polynomial equation by using the theory of A-matix over a general field. We also prove the necessary and sufficient condition for existence of a solution to the matrix equation over a Complete Field. Some methods for solving the matrix equation are presented.
出处
《应用数学与计算数学学报》
2002年第2期61-67,共7页
Communication on Applied Mathematics and Computation
关键词
代数闭域
Λ-矩阵
初等因子
完全域
矩阵多项式方程
可解性
Complete Field, Algebraic Closed Field, Eigenpolynomial, Elementary Divisor, Matris Polynomial Equation. Scheduling, Mathematical Programming, Assignment Problem.