摘要
研究了一种基于小波包分析与信号能量分解的故障特征提取方法 ,运用这种方法提取了一风机轴不对中故障特征向量 ,为神经网络故障诊断提供了新的故障样本。实验结果表明这种方法比基于Fourier变换的故障特征提取方法更有效 。
A extraction method of mechanical fault symptom bas ed on wavelet packet analysis and signal energy decomposition are researched With this method,an ei ge nvector of shaft-misalignment fault is extracted from ventilator,which provides new fault samples for neural network fault diagnosis The experimental result sh o ws this method is more effective than the extraction method of fault symptom bas ed on the Fourier transformation,and it is very fit for mechanical fault diagnos is
出处
《煤矿机械》
北大核心
2003年第3期92-94,共3页
Coal Mine Machinery
基金
河南省自然科学基金项目 (0 1 1 1 0 4 0 80 0 )