摘要
The dynamic viscosity of pure In, In-1%Sb (mass fraction, so as the follows) alloy, In-55%Sb hypoeutectic alloy and In-69.5%Sb eutectic alloy was measured by using a torsional oscillation viscometer at different temperatures above liq-uidus. The experimental results show that the viscosity of these melts decreases with increasing temperature. The anomalous change of viscosity occurs at about 430 and 470℃in pure In melt. The variation of viscosity with temperature well meets exponential correlation and no anomalous change occurs in measured temperature range in the In-1%Sb alloy melt. A transition occurs at about 800℃ in both of In-55%Sb and In-69.5%Sb alloy melts. The sudden change of viscosity suggests the structure change of melts. DSC (differential scanning calorimetry) curves of In-1%Sb alloy during heating and cooling were measured, and the results show that no structural variation in In-1%Sb alloy melt was testified further. In addition, the viscosity of In melt decreases with the addition of1%Sb.
The dynamic viscosity of pure In, In-1%Sb (mass fraction, so as the follows) alloy, In-55%Sb hypoeutectic alloy and In-69.5%Sb eutectic alloy was measured by using a torsional oscillation viscometer at different temperatures above liq-uidus. The experimental results show that the viscosity of these melts decreases with increasing temperature. The anomalous change of viscosity occurs at about 430 and 470℃in pure In melt. The variation of viscosity with temperature well meets exponential correlation and no anomalous change occurs in measured temperature range in the In-1%Sb alloy melt. A transition occurs at about 800℃ in both of In-55%Sb and In-69.5%Sb alloy melts. The sudden change of viscosity suggests the structure change of melts. DSC (differential scanning calorimetry) curves of In-1%Sb alloy during heating and cooling were measured, and the results show that no structural variation in In-1%Sb alloy melt was testified further. In addition, the viscosity of In melt decreases with the addition of1%Sb.
基金
ThisworkisfinanciallysupportedbytheNationalNaturalScienceFoundationofChina(No.50071028)
theNaturalScienceFoundationofShandongProvince(No.Z2001F02).