期刊文献+

GENERALIZED OPERATORS AND OPERATOR-VALUED DISTRIBUTIONS IN QUANTUM FIELD THEORY 被引量:2

GENERALIZED OPERATORS AND OPERATOR-VALUED DISTRIBUTIONS IN QUANTUM FIELD THEORY
下载PDF
导出
摘要 The relation between generalized operators and operator-valued distributions is discussed so that these two viewpoints can be used alternatively to explain quantum fields. The relation between generalized operators and operator-valued distributions is discussed so that these two viewpoints can be used alternatively to explain quantum fields.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2003年第2期145-154,共10页 数学物理学报(B辑英文版)
基金 Project supported by NSF of China(10171035)
关键词 White noise analysis quantum fields generalized operator operator-valued distribution White noise analysis, quantum fields, generalized operator, operator-valued distribution
  • 相关文献

参考文献17

  • 1Bjorken J D, Drell S D. Relativistic Quantum Fields. New York: McGraw-Hill, 1965
  • 2Berezin F A. The Method of Second Quantization. New York: Academic Press, 1962
  • 3Bogolubov N N, Logunov A A, Okska A I, Todorov I T. General Principles of Quantum Field Theory.Math Phys and Appl Math, 10. Dordreht: Kluwer, 1990
  • 4Chung D M, Ji U C, Obata N. Higher powers of quantum white noises in terms of integral kernel operator.Infinite Dimensional Analysis, Quatum Probability and Related Topics, 1998,1(4):533-560
  • 5Cochran W G. Kuo H H, Sengupta A. A new class of white noise generalized functions. Infinite Dimensional Analysis, Quantum Probability and Related Topic, 1998, 1(1): 43-68
  • 6Dirac P A M. The quantum theory of emission and absorption of radiation. Proc R Soc London, 1927, 114A: 243-265
  • 7Friedrichs K O. Mathematical Aspects of the Quantum Theory of Fields. New York: Interscience, 1953
  • 8Hida T. Analysis of Browian functionals. Carleton Math Lect Notes Vol. 13. Ottawa: Cartelon University,1975
  • 9Hida T, Kuo H H, Potthoff J, Streit L. White Noise, An Infinite Dimensional Analysis. Dordrecht: Kluwer, 1992
  • 10Huang Z Y. Quantum white noise, white noise approach to quantum stochastic calculus. Nagoya Math J, 1993,129:23-42

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部