期刊文献+

网络流量的神经网络自适应Smith预估补偿控制 被引量:3

Neural Network Adaptive Control with Smith Predictor for Flow Rate in Networks
下载PDF
导出
摘要 网络的时延对基于速率反馈的ATM网络的ABR流量控制具有极大的不利影响,Smith预估补偿是克服大纯滞后影响的有效手段,然而其对时延的预估误差非常敏感,实际网络时延的不确定性往往使其难以取得满意的效果。该文将在线学习的神经网络自适应控制器与Smith预估补偿相结合,很好地克服了网络的时延及其不确定性对流量控制的不利影响,从而使信源的发送速率能快速响应网络状态的变化。与PIDSmith预估补偿控制相比,控制的适应性和鲁棒性更好,更适用于实际网络,且为保证信元不溢出及链路带宽充分利用所需的缓冲容量更低。 The network time delay has a great adverse effect on the rate-based ABR flow control in ATM networks. Smith predictor is an effective means that overcomes the large time delay. However, it is very sensitive to model error, so it is not satisfactory to use only Smith predictor in real networks which has indeterminacy of the time delay. The paper designs the neural network adaptive controller with Smith predictor for the flow control, which can overcome the adverse effect caused by the time delay and its indeterminacy well. Thus the source rates can respond to the changes of network status rapidly. Compared with PID Smith predictor control, this scheme has much better adaptability and robustness which are applicable to actual networks, and much lower buffer capacity which is necessary for no cell overflow and link bandwidth full utilization.
出处 《系统仿真学报》 CAS CSCD 2003年第4期575-578,共4页 Journal of System Simulation
基金 国家973重点基础研究发展项目(G1998030415)
关键词 ATM网络 网络流量 神经网络 自适应Smith预估补偿控制 自适应控制器 ATM network flow rate control neural network smith predictor
  • 相关文献

同被引文献15

  • 1王建辉,黄敏,顾树生.基于PSO的板形板厚小波神经网络解耦PID控制[J].东北大学学报(自然科学版),2005,26(3):224-227. 被引量:5
  • 2李遵基.热工自动控制系统[M].北京:中国电力出版社,2001..
  • 3张德珍 彭道刚 韩璞 等.基于神经元非模型的单元机组协调控制[J].自动化理论、技术与应用,2002,(9):163-167.
  • 4Benmohamed L,Meerkov S M.Feedback control of congestion in packet switching networks:the case of a single congested node[J].IEEE/ACM Transactions on Networking,1993,1(6):693-707.
  • 5Kolarov A,Ramamurthy G.A control-theoretic approach to the design of an explicit rate controller for ABR service[J].IEEE/ACM Transactions on Networking,1999,7(5):741-753.
  • 6Mascolo S.Congestion control in high-speed communication networks using the Smith principle[J].Automatica,1999,35:1921-1935.
  • 7Gu D Y,Liu T,Ou L L,et al.ABR traffic control over ATM network using a two-degree-of-freedom Smith predictor[C]∥Proc of the 43rd IEEE CDC.Piscataway:IEEE,2004:5158-5161.
  • 8Grieco L A,Mascolo S.Smith's predictor and feedforward disturbance compensation for ATM congestion control[C]∥Proc of the 41st IEEE CDC.Piscataway:IEEE,2002:987-992.
  • 9Eberhart R,Shi Y H.Particle swarm optimization:development,applications and resources[C]∥Proc of IEEE Conf on Evolutionary Computation.Seoul,2001:81-86.
  • 10Clerc M,Kennedy J.The particle swarm explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部