期刊文献+

基于整数平方阈值和索引表的静止图像编码算法 被引量:2

Novel Still Image Coding Algorithm Based on Integer Square Threshold and Index Table
下载PDF
导出
摘要 零树编码对一般小波变换有很多优点 ,但对能量集中性较差的整型小波变换 (IWT)却达不到最佳效果 针对IWT存在的这一特点 ,结合零树编码的优点给出一种新算法 第 1,根据IWT中各子带系数幅值的动态变化范围较小 ,小波图像能量集中性较DWT差这一特点 ,提出利用连续的正整数平方作为IWT小波系数量化阈值的整数平方算法 ;第 2 ,提出一种基于索引表和游程编码的小波零树编码方法 ,简化了编码与解码过程 实验表明 。 The zero tree coding algorithm has many advantages for wavelet transform, but its ability for integer wavelet transform does not equal to its ambition because the energy concentration of integer wavelet transform is not as good as wavelet transform A new algorithm is described, that improves embedded zero tree coding for integer wavelet transform from two aspects First, because every subband coefficient by integer wavelet transform has smaller dynamic change value and this kind of wavelet images have worse energy compaction than other wavelet image, a new method of selecting quantified threshold based on “integer square algorithm” is applied Second, a kind of index table based on RLE coding can help zero tree coding for better compressing images A plenty of experiments indicate that the new algorithm for IWT is more simple and efficient than the EZW algorithm and SPIHT algorithm
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第4期570-575,共6页 Journal of Computer Research and Development
基金 国家自然科学基金 (5 963 82 2 0 ) 吉林大学青年教师基金
关键词 图像处理系统 计算机 静止图像编码算法 零树编码 索引表 整数平方阈值 整型小波变换 integer wavelet transform zero tree coding integer square algorithm index table quantization threshold
  • 相关文献

参考文献10

  • 1[1]W Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis. 1996, 3(2): 186~200
  • 2[2]I Daubechies, W Sweldens. Factoring wavelet transforms into lifting steps. Journal of Fourier Analasys Application, 1998, 4(3): 245~267
  • 3[3]R Calderbank, I Daubechies, W Sweldens. Wavelet transforms that map integers to integers. Applied Computational Harmonic Analysis, 1998, 5(3): 332~369
  • 4[4]W Sweldens. The lifting scheme: A custom-design construction of second generation wavelets. SIAM Journal of Mathematical Analysis, 1998, 29(2): 511~546
  • 5[5]M D Adams, F Kossentini. Reversible integer-to-integer wavelet transforms for image compression: Performance evaluation and analysis. IEEE Trans on Image Processing, 2000, 9(6): 1010~1024
  • 6[6]ISO/IEC, ISO/IEC 15444-1, Information technology-JPEG 2000 image coding system-Part 1: Core coding system. 2000. http://www.jpeg.org
  • 7[7]ISO/IEC, ISO/IEC 14495-1. Lossless and near-lossless compression of continuous-tone still image-baseline. 2000. http://www,jpeg.org
  • 8[8]J Reichel, M Menegaz, M J Nadenau et al. Integer wavelet transform for embedded lossy to lossless image compression. IEEE Trans on Image Processing, 2001, 10(3): 383~392
  • 9[9]J M Shapiro. Embedded image coding using zerotree of wavelet coefficients. IEEE Trans on Signal Processing, 1993, 41(12): 3445~3462
  • 10[10]A Said, W A Pearlman. New fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans on Circulation System Video Technology, 1996, 6(3): 243~249

同被引文献2

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部