摘要
月平均气温是气象的主要特性参数 ,也是影响气候变化的重要因素 .文中配合实例介绍了一种基于时间序列的人工神经网络学习算法的流程 ,给出了该算法的实验结果并对不同情况下的结果作了比较 ,同时就在实现该算法的过程中所出现的问题以及解决方案进行了阐述 .最后提出了将
Monthly average value of air temperature is one of main property parameters of meteorology and also one of important factors influencing variation of climate. This paper illustrates a kind of ANN algorithm based on time series with an example, presentes the results of experiment under different circumstances and makes a comparison among them, documentes problems and their solutions. Finally proposes a new model of combining L M NN with time serial method.
出处
《武汉理工大学学报(交通科学与工程版)》
北大核心
2003年第2期237-240,共4页
Journal of Wuhan University of Technology(Transportation Science & Engineering)