期刊文献+

关于方阵特征值扰动的两个注记 被引量:5

Two Notes on the Variation of the Spectrum of a Matrix
下载PDF
导出
摘要  第一部分将孙继广教授的结果推广,得到任意方阵特征值扰动的一个结果与若干推论.第二部分,给出了对称矩阵加上一个对称矩阵后,所得矩阵之特征值的表示. Problem on the variation of the spectrum of a matrix often gives intense interest.The aim of this paper is to give two notes on such problem.The first part of this paper give a note on the variation of the spectrum of an arbitrary matrix,and in second part of it,a note on characterization of eigenvalues of a symmetric matrix perturbed by a symmetric matrix is given.
作者 谈雪媛
出处 《南京师大学报(自然科学版)》 CAS CSCD 2002年第4期17-19,共3页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 对称矩阵 方阵 特征值扰动 SCHUR分解 奇异值分解 扰动界 酉等价 Schur's unitary triangularization theorem,singular value decomposition,eigenvalue
  • 相关文献

参考文献3

  • 1Yongzhong Song.A note on the variation of the spectrum of an arbitrary matrix[J].Linear Algebra Appl.2002,342: 41-46.
  • 2Sun Jiguang.On the variation of the spectrum of a normal matrix[J]. Linear Algebra Appl.1996,246: 215-223.
  • 3WilkinsonJH著 石钟慈 邓健新 译.代数特征值问题[M].北京:科学出版社,2001..

共引文献2

同被引文献19

  • 1吕烔兴.可对称化矩阵特征值的扰动界[J].高等学校计算数学学报,1994,16(2):177-185. 被引量:15
  • 2吕烔兴.可对称化矩阵特征值的扰动[J].南京航空航天大学学报,1994,26(3):384-388. 被引量:4
  • 3孙继广.关于正规矩阵特征值的扰动[J].计算数学,1984,6(3):334-336.
  • 4Henrici P. Bounds for iterates, inverses, special variation and fields of values of non - normal matrices [ J ]. Numer. Math. , 1962,4:24 -40.
  • 5Hoffman A J,Wielandt H W. The variation of the spectrum of a normal matrix[J]. Duke Math. J. ,1953,20( 1 ) :37 -39.
  • 6Elsener L, Friendland S. Singular values, doubly sto- chastic matrices and applications[J]. Linear Algebra Appl., 1995,220.. 161-169.
  • 7Hoffman A J, Wielandt H W. trum o[ a normal matrix[J] (1):37-39. The variation of the spec- Duke Math. J. , 1953, 20.
  • 8Bhatia R,Kittanch F,LI Ren-cang.Some inequalities for commutators and application to spectral variatioⅡ[J].Linear andMultilinear algebra,1997,43:207-219.
  • 9Henrici P.Bounds for iterates,inverses,special variation and fields of values of non-normal matrices[J].Numer Math,1962,4(1):24-40.
  • 10Hoffman A J,Wieandt H W.The variation of the spectrum of a normal matrix[J].Duke Math J,1953,20(1):37-39.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部